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Abstract
Fænomenet synkronisering er blevet undersøgt ved hjælp af Kuramoto modellen samt med
forskellige tilpasninger deraf. Denne model beskriver en stor population af koblede oscil-
latorer. Tilpasningerne som er undersøgt her inkluderer en bimodal frekvens fordeling,
tilføjelse af hvid støj, kobling afhængig af beliggenhed og en uniform faseforskydning. Vi
reproducerer analyser og udfører simulationer, hvor blandt andet Monte Carlo metoder er
brugt. Ved hjælp af tid-frekvens analyse baseret på wavelets er vi i stand til at opdage
partiel synkronisering.
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Introduction
We introduce the concept of synchronisation and the model that Kuramoto used to describe it
as well as various adaptations of it. We are interested in the behaviour of the oscillators for
different distributions of their natural frequencies and different types of coupling between them.
How strong should the oscillators be coupled to each other in order for them to synchronise?
What is the effect of adding white-noise? How can we use time-frequency analysis to detect
(partial) synchronisation? What conditions does a system need to satisfy for chimera states to
appear?

This Thesis and our Results
In order to answer these and more questions about synchronisation we followed analyses of
various models that were performed previously. We start with the analysis of the Kuramoto
model based on the works of Kuramoto, Battogtokh and Okuda [1, 2]. We then look at the
Kuramoto model with added white noise based on the works of Acebrón and Bonilla [3, 4]. Our
study of those models with bimodal frequency distributions as well as a model in which Chimera
states appear are based on the works of Sakaguchi [5], Strogatz, Mirello, Martens, Abrams and
Pannagio [6, 7, 8, 9, 10] and those of Ott and Antonsen [11]. In addition to this we performed
numerical analyses on all models discussed using Monte Carlo simulations to make a comparison
between each of the models with and without a white noise forcing term. We also performed
time-frequency analysis based on wavelets using the Matlab Wavelet toolbox [12, 13] on those
results, which to our knowledge has not been performed before on the models discussed here.

Motivational Examples
Well known examples of collective synchronisation in biology are those of fireflies flashing and
crickets chirping in sync. Collective synchronisation also appears within organism. For example
in insulin-secreting cells in the pancreas and in pacemaker cells in the heart. Furthermore there
are cells in the brain and spinal cord that synchronise in order to control the rhythm of breathing
and running. [14]

The interaction between fireflies, crickets or neurons happens through pulses. The insects or
cells respond to sudden impulses of their neighbours. This behaviour is difficult to model math-
ematically. We would like to model continuous behaviour rather than the discontinuous pulses.
Thus we consider only the rhythm of an individual or neuron. We might think of this as oscil-
lators with a certain natural frequency. When their periods (or frequencies) coincide, they are
said to be in sync.

We will consider a large collection of coupled oscillators and study the behaviour of the sys-
tem. Such a large collection of oscillators might spontaneously lock into a common frequency.
In other words, without force put upon them, the oscillators will take on the same frequency
despite having different natural frequencies. When the coupling is location dependent and fur-
thermore a phase lag is introduced, even more interesting behaviour can appear. We study the
appearance of chimera states in which some of the oscillators are synchronised whilst the others
move incoherently.
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Organisation of the Thesis
The network we will study in Section 1 is the Kuramoto model. The coupling strength between
the oscillators depends only on the relative phase between the oscillators. In this Section we
also introduce the order parameter, which is an important measure of synchronisation that is
used throughout the paper. We continue by studying the Kuramoto model with added white
noise in Section 2. In this model the coupling depends on the oscillators’ relative phase as well as
a white-noise term. The phase of each oscillator is described by a stochastic differential equation.

The analytics of considering a bimodal frequency distribution are discussed in Section 3. We
consider the Kuromoto model with added white noise where the natural frequencies have a dis-
crete bimodal distribution. Furthermore we consider the Kuramoto model where the oscillators
have a Lorentzian bimodal frequency distribution.

Another adaptation is implementing a coupling that is location dependent in addition to be
depending on relative phases. The model we study analytically in Section 4 was proposed by
Abrams, Mirello and Strogatz [6]. The oscillators are divided into two groups where the intra-
group coupling is stronger than the intergroup coupling. Apart from location dependent coupling,
this model also includes a phase-lag as described by Sakaguchi [5]. In such models an interesting
phenomena, named a chimera state, can appear in which some oscillators are synchronised while
others move incoherently.

In the limit of infinitely many oscillators we can study the behaviour of such a network ana-
lytically. To confirm the stability properties that can be found analytically, we perform Monte
Carlo simulations of the model. The resulting paths of the oscillators can then be analysed using
time-frequency analysis. In particular, we will use time-frequency analysis based on wavelets as
described in Section 5 on the order parameter of the Kuramoto model. This parameter gives
the general rhythm of the oscillators and with our time-frequency analysis we should be able to
detect partial synchronisation. This is relevant when we for example consider a bimodal distri-
bution of the oscillators frequencies. The results of the simulations as well as the time-frequency
analysis on the order parameters for different models described in this thesis can be found in
Section 6.
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N number of oscillators

ω natural frequency

θ phase

K coupling strength (Kuramoto model)
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z complex order parameter

r r = |z|, measure of phase coherence 2

ψ average phase

ρ distribution of oscillators

g distribution of natural frequencies

ξ white noise

D noise strength

W Wiener / Brownian process

η function with which we perturb ρ

c first harmonic of η’s Fourier series

η⊥ second and higher order harmonics of η’s Fourier series

c.c. complex conjugate of the preceding term

λ eigenvalue

δ Dirac delta

σc continuous spectrum

Kc critical coupling

K∗ coupling at which D = −λ

ω0 mean (or means ±ω0) of (bimodal) frequency distribution

∆ width parameter in (bimodal) Lorenzian distribution

∗ complex conjugation

a term in the Ott-Antonsen ansatz cn = an for the Fourier expansion terms of ρ

α phase lag

β π
2 − α

µ intragroup coupling

ν intergroup coupling

A parameter determining intra- / intergroup coupling strength

φ radial coordinate of order parameter z

ϕ angular coordinate of order parameter z

ψ(t) mother wavelet

ψa,b(t) daughter wavelet

LψS(a, b) wavelet transform of a signal S(t)
2Either of the whole oscillator population or (only in Section 4) a local order parameter for the second group.
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1 The Original Kuramoto Model
In this section we introduce the Kuramoto model as well as the order parameter. This order
parameter can be seen as the average of a group of oscillators and turns out to be useful when
studying synchronisation. We start by defining synchronisation and briefly discuss Winfree’s
research before we introduce Kuramoto’s ideas.

We will now formally define what we mean by synchronisation. Consider a system of N os-
cillators with phases θi for i = 1, . . . , N . These oscillators are said to synchronise if θ̇i − θ̇j → 0
as t → ∞ for every i, j = 1, . . . , N , where a dot denotes the derivative with respect to time.
Synchronisation thus means that the oscillators travel with the same speed as t → ∞. They are
said to be exactly synchronised when moreover θi − θj → 0 as t → ∞ for every i, j = 1, . . . , N .
Thus next to having the same speed, the oscillators will follow the exact same path as t → ∞.

1.1 Winfree’s Research on Synchronisation
Winfree started his research on large populations of limit-cycle oscillators in 1966 [14]. He used
computer simulations, mathematical analysis and experiments with electrically coupled neontube
oscillators. In his mathematical analysis Winfree considered a large population of limit-cycle os-
cillators. Such oscillators are periodic in time, meaning that the phase corresponds to a closed
curve called a limit cycle in the phase plane. Trajectories close to this limit cycle will converge
to it. In particular this means that when an oscillator is slightly perturbed it will still tend to
move along its limit cycle, i.e. move with its natural frequency.

Winfree allowed for interaction between all oscillators and applied some simplifications in or-
der to analyse the behaviour. Firstly he assumed that the coupling between the oscillators was
weak and secondly he assumed that the oscillators were nearly identical. A third simplifica-
tion made by Winfree was that the natural frequencies are taken from some narrow probability
function. Furthermore the oscillators are assumed to be coupled to the collective rhythm of the
population. That is, rather than being coupled to each of the other oscillators it is coupled to
some average of the frequencies.

1.2 Introducing the Kuramoto Model
Inspired by the works of Winfree, Kuramoto decided to study the phenomenon as well [15]. He
expanded on the ideas of Winfree and derived a model that describes the long term dynamics of
any system of nearly identical weakly coupled limit-cycle oscillators. In spite of the assumptions
made in order to simplify the model, the oscillators described by the Kuramoto model will still
synchronise under certain conditions. Therefore the model can and has been used to study col-
lective synchronisation.

The Kuramoto model describes a system of N oscillators that are coupled by means of their
phase differences. A general form for the rate of change of the i’th oscillator is given by

θ̇i = ωi +
N∑
j=1

Li,j(θj − θi),

for i = 1, . . . , N . Here ωi is the natural frequency of the respective oscillator and Li,j denotes
the interaction function. Kuramoto considered purely sinusoidal coupling between all oscillators.

5



Thus he obtained

θ̇i = ωi +
N∑
j=1

Ki,j sin(θj − θi), i = 1, . . . , N, (1)

where Ki,j denote the coupling constants. For small coupling constants the model approximately
describes a system of independent oscillators moving at frequencies ωi. Because the model is
closely related to this solvable system, it is a useful tool in our study. As we will find out, the
coupling constants should be sufficiently great in order for synchronisation to occur.

Different types of coupling may be considered. Some possibilities are next-neighbour coupling,
mean-field coupling and long-range coupling [4]. We will consider mean-field coupling, each os-
cillator is coupled to some average frequency. The coupling constants Ki,j are identically equal
to K

N for all i, j = 1, . . . , N . The model then becomes

θ̇i = ωi + K

N

N∑
j=1

sin(θj − θi), i = 1, . . . , N. (2)

Each oscillator is coupled to the collective rhythm, as was also assumed by Winfree. This is not
evident from the equations for the Kuramoto model as introduced above (1). To get a better
idea of the model and the dependence between the oscillators we therefore introduce the order
parameter.

1.3 Order Parameter
Let θi describe the angle of a point running around the unit circle. The model then describes a
collection of N points running around this unit circle. We can define a collective rhythm for this
collection of points as

z = reiψ = 1
N

N∑
j=1

eiθj . (3)

Here ψ is the average phase and r measures the phase coherence of the oscillators. The order
parameter z will have a value located in the unit circle. If the points are spread around the
circle, r will be close to zero. If the points are located closer to each other, r will be closer to
1. So values of reiψ close to zero indicate absence of synchronisation whereas values close to the
unit circle indicate (partial) synchronisation.

We can write equations (2) in terms of the order parameter. First we rewrite (3) by multi-
plying both sides by e−iθi to obtain

rei(ψ−θi) = 1
N

N∑
j=1

ei(θj−θi).

We then equate imaginary parts:

r sin(ψ − θi) = 1
N

N∑
j=1

sin(θj − θi).
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By this result equation (2) can be rewritten to

θ̇i = ωi +Kr sin(ψ − θi), i = 1, . . . , N.

Modifying the model using this order parameter leads us to the conclusion that each oscillator
is coupled to the others only through the mean-field quantities r and ψ. As the population
becomes more coherent, r increases and therefore the effective coupling term Kr increases. This
leads to more and more oscillators becoming part of the synchronised group of oscillators. This
behaviour was first discovered by Winfree and specifically stands out in the Kuramoto model.

Kuramoto used this order parameter to study the behaviour of the model. We will have a
look at his analysis in the next subsection. In Section 5 we will analyse the order parameter in
a different manner. Namely by using time-frequency analysis.

1.4 Kuramoto’s Analysis
In this section, we will follow Kuramoto’s analysis of the model as described by Strogatz [16].
We have rewritten (3) in terms of the mean-field quantities in the following way:

θ̇i = ωi +Kr sin(ψ − θi), for i = 1, . . . , N.

We will now analyse the model following Kuramoto’s procedures. In his analysis, Kuramoto
sought for particular solutions, namely those in which r(t) is constant and ψ(t) rotates uniformly
at some frequency Ω. By then moving into a rotating frame with this frequency Ω we can set
ψ = 0 to obtain

θ̇i = ωi −Kr sin(θi), for i = 1, . . . , N.

This equation has two different types of solutions. One corresponding to the oscillators that are
in the synchronised pack, the other corresponding to the oscillators that are not.

Oscillators for which their natural frequency satisfies |ωi| ≤ Kr have solutions approaching
a stable fixed point. This fixed point satisfies θ̇i = 0 and can therefore be implicitly described by

ωi = Kr sin(θi), where |θi| ≤ 1
2
π.

These are the oscillators that are part of the synchronised pack. With respect to the original
frame, these oscillators are locked to the frequency Ω. For coupling constants great enough (rel-
ative to the natural frequencies), each oscillator will tend to a fixed point. Hence they will all
synchronise when we take the limit K → ∞.

However, this is not necessarily the case. Some of the oscillators might have natural frequencies
such that |ωi| > Kr. These will not lock to the frequency Ω. Instead, they will run around the
circle in an incoherent manner. As they interact with the other oscillators, they will speed up at
some of the phases and slow down at others.

Recall that we are considering solutions such that the order parameter (3) is constant. To
ensure that the order parameter is constant even though not all oscillators lock their phase,
Kuramoto required the drifting oscillators to form a stationary distribution. He required that
oscillators pile up at slow places and thin out at fast places. The fraction of oscillators whose
natural frequency is given by ω that lie between θ and θ + dθ is denoted by ρ(θ, ω)dθ. The
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incoherent solution is for example represented by a phase distribution ρ(θ, ω) has a constant
value of 1

2π for each ω when we normalise the integral using∫ π

−π
ρ(θ, ω)dθ = 1 (4)

for each ω. Then we should have that it is inversely proportional to the speed at θ. Hence,

ρ(θ, ω) = C

|θ̇|
= C

|ω −Kr sin(θ)|
. (5)

The normalisation condition (4) thus results in

1 = lim
n→π

∫ n

−n

C

|ω −Kr sin(θ)|
dθ

= lim
n→π

−2C tan−1
(
Kr−ω tan( n

2 )√
ω2−(Kr)2

)
sign(ω −Kr sin(n))√

ω2 − (Kr)2

∣∣∣n
−n

=
2C
(
π
2 + π

2
)

sign(ω) · sign(ω)√
ω2 − (Kr)2

= 2Cπ√
ω2 − (Kr)2

.

The normalisation constant C is determined to be

C = 1
2π
√
ω2 − (Kr)2.

Since we are in the rotating frame such that ψ = 0, we can rewrite the order parameter to
reiψ = r. The order parameter should describe the collective rhythm of the oscillators. As we
take the limit N → ∞, we denote the order parameter by

r = ⟨eiθ⟩lock + ⟨eiθ⟩drift, (6)

where ⟨eiθ⟩lock and ⟨eiθ⟩drift denote the averages of the oscillators locked to the phase ψ = 0 and
the drifting oscillators respectively. For a locked state θlock, we have that θ̇lock = 0 and hence

sin(θlock) = ω

Kr
. (7)

Kuramoto assumes that the natural frequency distribution of the oscillators satisfies g(ω) =
g(−ω) in the limit of infinitely many oscillators. This implies that the number of oscillators at
θlock is equal to the number of oscillators at −θlock and therefore ⟨sin(θlock)⟩ = 0. Thus the
average of the locked phases is given by

⟨eiθ⟩lock = ⟨cos θ⟩lock, (8)
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where the drifting oscillators have natural frequencies satisfying |ω| > Kr. Their contribution
to the average of the population is given by

⟨eiθ⟩drift =
∫ π

−π

∫
|ω|>Kr

eiθρ(θ, ω)g(ω)dωdθ

=
∫ π

−π

∫ −Kr

−∞
eiθρ(θ, ω)g(ω)dωdθ

+
∫ π

−π

∫ ∞

Kr

eiθρ(θ, ω)g(ω)dωdθ

=
∫ π

−π

∫ ∞

Kr

eiθρ(θ,−ω)g(ω)dωdθ

+
∫ π

−π

∫ ∞

Kr

eiθρ(θ, ω)g(ω)dωdθ. (9)

Where we rewrote the first integral by changing variables from ω to −ω. This implies the change
of variables for the phase θ → θ + π as follows: ω = Kr sin(θ) → −Kr sin(θ) = Kr sin(θ + π).
Thus (9) becomes

⟨eiθ⟩drift =
∫ 2π

0

∫ ∞

Kr

(
eiθρ(θ, ω)g(ω) + ei(θ+π)ρ(θ + π,−ω)g(−ω)

)
dωdθ

=
∫ 2π

0

∫ ∞

Kr

(
eiθρ(θ, ω)g(ω) − eiθρ(θ, ω)g(ω)

)
dωdθ

=0.

Here we have used the symmetry ρ(θ + π,−ω) = ρ(θ, ω) implied by (5). Combining this result
with (6) and (8), we find that r only depends on the cosine of the phase of the locked oscillators.
For locked oscillators, the integral over θ is non zero only for one particular phase θ(ω). We
obtain

r = ⟨cos θ⟩lock

=
∫

|ω|≤Kr
cos(θ(ω))g(ω)dω.

For the locked oscillators, we can use the expression for ω given by (7) to change variables to θ.

r =
∫

|θ|≤ 1
2π

cos(θ)g(Kr sin(θ))Kr cos(θ)dθ

= Kr

∫
|θ|≤ 1

2π

cos2(θ)g(Kr sin(θ))dθ.
(10)

First of all, this equation has the trivial solution with r = 0. The distribution of the oscillators
is then given by ρ(θ, ω) = C

|ω| = 1
2π for all θ and ω. The corresponding state is completely

incoherent, it exhibits no kind of synchrony.

The non-trivial solutions of equation (10) satisfies

1 = K

∫
|θ|≤ 1

2π

cos2(θ)g(Kr sin(θ))dθ. (11)
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From this condition Kuramoto derived an exact formula for the critical coupling Kc, that is
the value for the coupling K below which no synchronisation occurs and above which (partial)
synchronisation occurs. We obtain this value by letting r → 0+. Then equation (11) becomes

1 = K

∫
|θ|≤ 1

2π

cos2(θ)g(0)dθ

= K

∫
|θ|≤ 1

2π

1
2

(cos(2θ) + 1)g(0)dθ

= K

[
(1
4

sin(2θ) + 1
2
θ)g(0)

]θ= π
2

θ=− π
2

= K
π

2
g(0).

Thus we obtain the critical coupling

Kc = 2
πg(0)

. (12)

If we consider for example a normal distribution

g(ω) = 1
σ2π

exp
(

−ω2

2σ

)
,

we obtain the critical coupling constant Kc = 4σ. If instead we consider the Lorenzian distribu-
tion

g(ω) = ∆
π

1
ω2 + ∆2 ,

then the critical coupling will be Kc = 2∆. We can integrate (10) exactly for the Lorenzian
distribution:

r =Kr lim
n→ π

2

∫ n

−n
cos2(θ)g(Kr sin(θ))dθ

=Kr∆
π

lim
n→ π

2

∫ n

−n

cos2(θ)
K2r2 sin2(θ) + ∆2 dθ

=Kr∆
π

lim
n→ π

2

∫ n

−n

1
∆K2r2

[√
∆2 +K2r2 tan−1

(
tan(θ)

√
∆2 +K2r)

∆

)
− ∆θ

]n
θ=−n

= 1
πKr

(√
∆2 +K2r2π

2
− ∆π

2
−
√

∆2 +K2r2
(

−π

2

)
+ ∆

(
−π

2

))
= 1
Kr

(√
∆2 +K2r2 − ∆

)
.

Rearranging terms we obtain

Kr2 + ∆ = =
√

∆2 +K2r2

⇒ K2r4 + 2∆Kr2 + ∆2 = ∆2 +K2r2

⇒ Kr2 + 2∆ = K.

Since 0 ≤ r ≤ 1 by definition, we obtain

r =
√

1 − Kc

K
. (13)
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2 The Kuramoto Model with added White Noise
Now we will study the Kuramoto model as introduced before but with added white noise. Con-
sidering the model as the number of oscillators N goes to infinity, we study the evolution of
the density distribution of the oscillators. Adding white noise results in equations of Langevin
type for which the evolution of the density is known to follow a Fokker-Planck equation. This
equation is more easy to analyse than the continuity equation that is followed by the density
when there is no white noise added. Including white noise terms does not only make the model
more physical. It also leads to a model that is mathematically more tractable.

By perturbing from the incoherent solution we will proceed to study the system. We write
this incoherent solution in terms of its Fourier series and consider the fundamental node only.
This node is the only one contributing to the coherence r(t) which will be explained in detail
later (in Subsection 2.3.1). The basis is in that we assumed the coupling to be purely sinusoidal.
We start by introducing the model as well as the Fokker-Planck equation in Subsections 2.1 and
2.2 respectively. We then perform the stability analysis as done by Strogatz and Mirello [7] in
Subsection 2.3.

2.1 Introducing the Model
Adding a white-noise term ξi to the mean-field Kuramoto model in Equation 2, considering
purely sinusoidal mean field coupling Γi,j = K

N sin(θj − θi), we obtain the stochastic differential
equations:

θ̇i = ωi + K

N

N∑
j=1

sin(θj − θi) + ξi, i = 1, . . . , N, (14)

where ξi denotes the so-called white noise. Its expectation values are E(ξi(t)) = 0, and the
correlations are E(ξi(t)ξj(t)) = 2Dδ(t− t′)δij . Where δ(t) is the Dirac delta distribution; and δij
equals 1 for i = j and 0 elsewhere. Thus the values ξi are independent and taken from a normal
distribution with mean µ = 0 and standard deviation σ2 = 2D.

In the notation more common in probability theory we can rewrite Equation 14 as

dθi =

ωi + K

N

N∑
j=1

sin(θj − θi) − 1
2
∂

∂θi
D

 dt+
√

2D dW, i = 1, . . . , N,

where dW denotes a Wiener process. Each increment of a Wiener process is independent and
normally distributed with mean µ = 0 and standard deviation σ2 = 2D. We will only consider
constant noise strengths D in which case the above equation reduces to

dθi =

ωi + K

N

N∑
j=1

sin(θj − θi)

 dt+
√

2D dW, i = 1, . . . , N.

2.2 Fokker-Planck Equation
In our analysis of the model given by (14), we look at the evolution of the density distribution
of the oscillators. For Langevin type equations such as Equations 14, it is known that the the
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probability density satisfies a Fokker-Planck equation. The model (14) satisfies the following
Fokker-Planck equation (see for example Appendix A of [4] for a derivation of (15))

∂ρ

∂t
= D

∂2ρ

∂θ2 − ∂

∂θ
(ρv), (15)

where we ignore the subscripts i. The velocity v is given by v = ω + Kr sin(ψ − θ), where ψ is
the average phase as in (3). In the case where D = 0, this reduces to the continuity equation
that we will use in the analysis of the Kuramoto model without noise in Sections 3.2 and 4.1.
We assume that the density is 2π-periodic (e.g. ρ(θ + 2π, ω, t) = ρ(θ, ω, t) ), and we normalize
the density by ∫ π

−π
ρ(θ, ω, t)dθ = 1, ∀t. (16)

Thus with ρ(θ, ω, t)dθ we denote the fraction of oscillators with frequency ω at time t between
θ and θ + dθ. In the completely asynchronous case where all oscillators are distributed evenly
over the interval from −π to π, the density is given by ρ(θ, ω, t) = 1

2π . This is a trivial solution
to Equation 15 which we refer to as the incoherent solution.

As we consider the N -infinite case of the Kuramoto model with added white noise, we rewrite
the order parameter as follows:

reiψ =
∫ π

−π

∫ +∞

−∞
eiθρ(θ, ω, t)g(ω)dωdθ, (17)

where g(ω) is the distribution of the frequencies ωi as in Section 1 and the oscillators should be
initially independent.

2.3 Stability Analysis around the Incoherent Solution
To study the behaviour of the Kuramoto model with added white noise we first consider the triv-
ial solution of the system and look at what happens in the neighbourhood of it. With the trivial
solution we mean the case where all oscillators move incoherently and are evenly distributed over
the interval (−π, π). We then perturb this solution slightly and write out its Fourier series.

We then look only at the fundamental harmonics and derive the evolution equations for these
Fourier constants in Subsection 2.3.1. These constants are closely related to the order parameter.
Consequently we can from its behaviour determine the behaviour of the order parameter. To
analyse the Fourier constants we look at the eigenvalues of the equation in Subsection 2.3.2 and
at its continuous spectrum in Subsection 2.3.3. We derive conditions on the coupling strength
K and the noise strength D for which the eigenvalues and the values in the continuous spectrum
are in the left half of the complex plane and for which the system is thus linearly stable.

2.3.1 Derivation of the Evolution Equations

Following the approach of Strogatz and Mirello [7], we now consider solutions close to the inco-
herent solution. Thus let

ρ(θ, ω, t) = 1
2π

+ εη(θ, ω, t), (18)
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where ε ≪ 1 (, but ϵ ̸= 0). By the normalization property (16), we have that∫ π

−π

(
1

2π
+ ϵη(θ, ω, t)

)
dθ = 1

⇒ 1 + ϵ

∫ π

−π
η(θ, ω, t)dθ = 1

⇒
∫ π

−π
η(θ, ω, t)dθ = 0.

By substituting (18) into the Fokker-Planck Equation (15) we obtain

ε
∂η

∂t
= εD

∂2η

∂θ2 − ∂

∂θ

[
v

(
1

2π
+ εη

)]
. (19)

We will rewrite this equation in terms of the order parameter and consider the evolution equation
at O(ε). To find the value of the order parameter for the perturbation of the trivial solution we
substitute (18) into our expression for the order parameter (17) and rewrite this:

reiψ =
∫ π

−π

∫ +∞

−∞
eiθρ(θ, ω, t)g(ω)dωdθ

=
∫ π

−π

∫ +∞

−∞
eiθ
[

1
2π

+ εη(θ, ω, t)
]
g(ω)dωdθ

= 1
2π

∫ π

−π
eiθdθ︸ ︷︷ ︸

=0

∫ +∞

−∞
g(ω)dω +

∫ π

−π

∫ +∞

−∞
eiθεη(θ, ω, t)g(ω)dωdθ

= ε

∫ π

−π

∫ +∞

−∞
eiθη(θ, ω, t)g(ω)dωdθ. (20)

We denote the last integral by

r̂eiψ =
∫ π

−π

∫ +∞

−∞
eiθη(θ, ω, t)g(ω)dωdθ. (21)

Thus the relation between the original order parameter and r̂, whose dynamics we will study
later is r = εr̂. Using the relation we found for r, we look again at the Fokker-Planck equation.
Note that only the last term depends on r since v = ω +Kr sin(ψ − θ). We can rewrite the last
term of Equation 19 in the following way

∂

∂θ

[
v

(
1

2π
+ εη

)]
= 1

2π
∂v

∂θ
+ ε

∂

∂θ
(ηv)

= 1
2π

∂v

∂θ
+ ε

∂η

∂θ
v + ε

∂v

∂θ
η

= 1
2π

∂

∂θ
[ω + εKr̂ sin(ψ − θ)] + ε

∂η

∂θ
[ω + εKr̂ sin(ψ − θ)]

+ ε
∂

∂θ
[ω + εKr̂ sin(ψ − θ)] η

= − 1
2π
εKr̂ cos(ψ − θ) + ∂η

∂θ

[
εω + ε2Kr̂ sin(ψ − θ)

]
− ε2Kr̂ cos(ψ − θ)η

= − 1
2π
εKr̂ cos(ψ − θ) + εω

∂η

∂θ
+ O(ε2). (22)
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We substitute 22 back into the Fokker-Planck equation (19) to obtain

ε
∂η

∂t
=εD∂

2η

∂θ2 + 1
2π
εKr̂ cos(ψ − θ) + εω

∂η

∂θ
+ O(ε2)

⇒ ∂η

∂t
=D∂

2η

∂θ2 + 1
2π
Kr̂ cos(ψ − θ) − ω

∂η

∂θ
+ O(ε). (23)

We will now consider 23 at its lowest order in ϵ. Thus we analyse

∂η̃

∂t
=D∂

2η̃

∂θ2 + 1
2π
Kr̂ cos(ψ − θ) − ω

∂η̃

∂θ
, (24)

where we drop the tilde again in the following. To analyse Equation (24) we write η in terms of
its full Fourier series with respect to θ:

η(θ, ω, t) =
∞∑

−∞
cne

inθ

= c0 + c1e
iθ + c−1e

−iθ +
∞∑
2
cne

inθ +
−2∑

−∞
cne

inθ

︸ ︷︷ ︸
:=η⊥(θ,ω,t)

= ceiθ + c∗e−iθ + η⊥(θ, ω, t), (25)

where we write c := c1, with ∗ we denote the complex conjugate, and c0 =
∫ π

−π η(θ, ω, t)dθ = 0.
We write the first harmonics separately since these two terms are the only ones to contribute to
the coherence r(t). This is due to the simplification Kuramoto assumed in that the coupling is
purely sinusoidal. Recall that r is related to r̂ by r = ϵr̂ and notice that in (24) the only term
with r̂ is 1

2πKr̂ cos(ψ − θ) = Re(r̂eiψe−iθ). Thus higher order terms in η such as c2e
2inθ do not

contribute to r̂ and hence r.

The second and higher harmonics can be considered separately [7]. In our analysis in the next
subsection we concern ourselves with the fundamental amplitude c(ω, t). Inserting the Fourier
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expression (25) into our expression for the order parameter (21) we get

r̂eiψ =
∫ π

−π

∫ +∞

−∞
eiθη(θ, ω, t)g(ω)dθdω

=
∫ π

−π

∫ +∞

−∞
eiθ
[
ceiθ + c∗e−iθ + η⊥(θ, ω, t)

]
g(ω)dωdθ

=
∫ +∞

−∞

∫ π

−π
eiθ
[
ceiθ + c∗e−iθ] g(ω)dθdω +

∫ +∞

−∞

∫ π

−π
eiθη⊥(θ, ω, t)g(ω)dθdω

=
∫ +∞

−∞

[
1
2i
ceiθ + c∗

]π
θ=−π

g(ω)dω +
∫ +∞

−∞

∫ π

−π
eiθ

[ ∞∑
2
cne

inθ +
−2∑

−∞
cne

inθ

]
g(ω)dθdω

= 2π
∫ +∞

−∞
c∗g(ω)dω +

∫ +∞

−∞

∫ π

−π

[ ∞∑
2
cne

i(n+1)θ +
−2∑

−∞
cne

i(n+1)θ

]
g(ω)dθdω

= 2π
∫ +∞

−∞
c∗g(ω)dω +

∫ +∞

−∞

[ ∞∑
2

cn
i(n+ 1)

ei(n+1)θ +
−2∑

−∞

cn
i(n+ 1)

ei(n+1)θ

]π
θ=−π

g(ω)dω

= 2π
∫ +∞

−∞
c∗g(ω)dω. (26)

In the end most terms cancel out since for integers n ∈ Z it holds that ei(n+1)π = e−i(n+1)π.

Studying the stability we will look at both the eigenvalues and the continuous spectrum of
the evolution equation of c(t, ω). The relation between the original order parameter and c is
given by (20) and (26) and looks as follows:

reiψ = 2πε
∫ +∞

−∞
c∗g(ω)dω. (27)

If we look at order O(ε) only, then r(t) is determined by c(t, ω) through (27). If for example
c grows exponentially, then so will r. From (27) we can also obtain an expression in terms of
c(t, ω) for the cosine term in the Fokker-Planck equation for η (24) that was derived earlier.

r̂ cos(ψ − θ) = Re
[
r̂eiψ−iθ]

= 2πRe
[
e−iθ

∫ +∞

−∞
c∗(t, ω)g(ω)dω

]
= 2π

[
1
2
eiθ
∫ +∞

−∞
c(t, ω)g(ω)dω + 1

2
e−iθ

∫ +∞

−∞
c∗(t, ω)g(ω)dω

]
= πeiθ

∫ +∞

−∞
c(t, ω)g(ω)dω + c.c., (28)

where c.c. denotes the complex conjugate of the term preceding it. To obtain the evolution
equation of c(t, ω), we insert the expression of the term η (25), namely η = ceiθ + c∗e−iθ +
η⊥(θ, ω, t), and that of r̂ cos(ψ − θ) (28) into the Fokker-Planck equation for η (24). We denote
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(double) derivatives with the subscripts t, θ and θθ.

∂η

∂t
=D∂

2η

∂θ2 − ω
∂η

∂θ
+ 1

2π
Kr̂ cos(ψ − θ)

cte
iθ + c∗

t e
−iθ + η⊥

t =D
(
−ceiθ − c∗e−iθ + η⊥

θθ

)
− ω

(
iceiθ − ic∗e−iθ + η⊥

θ

)
+ K

2

(∫ ∞

−∞
c(t, υ)g(υ)dυ

)
eiθ + c.c. (29)

In the next subsection we study the evolution equation of the fundamental harmonic.

2.3.2 Analysis of the Fundamental Harmonic (Eigenvalues)

From the equation derived above we can obtain the evolution equations for the different harmon-
ics. To obtain the evolution equation for the fundamental harmonic we equate the coefficients of
eiθ on both sides of Equation 29 to obtain

∂c

∂t
= −(D + iω)c(t, ω) + K

2

∫ ∞

−∞
c(t, υ)g(υ)dυ. (30)

Equation 30 again nicely describes the mean-field property of the system. For each frequency ω,
c(t, ω) depends on the other frequencies through the term c(t, υ) in the integral. This integral is
the same regardless of the frequency ω. Thus the dependence of c(t, ω) on the other frequencies
is the same for each ω.

To find the eigenvalues λ we should solve

∂c

∂t
= λc(t, ω). (31)

Thus we look for solutions of the form c(t, ω) = b(ω)eλt. We substitute this expression for c into
the evolution equation of c (30).

∂

∂t
b(ω)eλt = − (D + iω)b(ω)eλt + K

2
eλt
∫ ∞

−∞
b(υ)g(υ)dυ

⇒ λb(ω) = − (D + iω)b(ω) + K

2

∫ ∞

−∞
b(υ)g(υ)dυ

⇒ b(ω) =
K
2
∫∞

−∞ b(υ)g(υ)dυ
λ+D + iω

The integral term does not depend on time or frequency. We can write

B = K

2

∫ ∞

−∞
b(υ)g(υ)dυ. (32)

The solution should be self consistent. Substituting b(ω) = B
λ+D+iω into this expression for B

we obtain:

B =K

2

∫ ∞

−∞

B

λ+D + iυ
g(υ)dυ

⇒ 1 =K

2

∫ ∞

−∞

1
λ+D + iυ

g(υ)dυ, (33)
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where B = 0 is not a solution since it would imply c(t, ω) = 0 for all t and ω and c(t, ω) := 0 is not
an eigenfunction of (31). Next consider Kuramoto’s assumptions on the frequency distribution
that g is even, and that g is non-increasing for non-negative ω. Under these assumptions Equation
33 has at most one solution and if such a solution exists, it is necessarily real [7]. Thus we consider
the real part of (33):

1 = K

2

∫ ∞

−∞

λ+D

(λ+D)2 + υ2 g(υ)dυ. (34)

We have obtained an equation describing the dependence of the eigenvalue λ on the noise strength
D, the coupling strength K and the frequency distribution g(ω). Using this equation we can
determine the stability of the original equation depending on these parameters. It gives the
stability properties of Equation 30, which describes the evolution in time of Fourier coefficient
c(t, ω) and is related to the order parameter by (27).

In the noise free case, D = 0, there can never be any negative eigenvalues since λ < 0 would
make the right hand side of (34) negative. Hence the fundamental harmonic is never linearly
stable for D = 0. More generally we have the condition that λ > −D in order to have a positive
right hand side.

To find the critical coupling, we substitute λ = 0 into Equation 34. Since at λ = 0, the stability
changes from linearly stable to unstable.

1 =Kc

2

∫ ∞

−∞

D

D2 + υ2 g(υ)dυ

⇒ Kc =2
[∫ ∞

−∞

D

D2 + υ2 g(υ)dυ
]−1

.

We can find the critical coupling for the noiseless case when we let λ go to zero from above in
Equation 34 for D = 0.

1 = lim
λ→0+

K

2

∫ ∞

−∞

λ

λ2 + υ2 g(υ)dυ.

As λ goes to 0 from above, λ
λ2+υ2 gets a sharper peak around υ = 0. For positive values of λ,

it holds that
∫∞

−∞
λ

λ2+υ2 dυ = π. Thus we can write λ
λ2+υ2

λ→0+

−−−−→ πδ(υ), where δ(υ) is the Dirac
delta function. For the critical coupling we then obtain

Kc =2
[∫ ∞

−∞
πδ(υ)g(υ)dυ

]−1

Kc = 2
πg(0)

which is the is the same formula that Kuramoto found in his analysis of the noiseless model. For
K > Kc the eigenvalue is positive which means that the incoherent solution is unstable for such
K. This in turn means that as t → ∞ we expect the system to synchronise.

2.3.3 Analysis of the Fundamental Harmonic (Continuous Spectrum)

We continue to find the values for the continuous spectrum of the evolution equation for the first
harmonic of η. Thus we look at Equation 30 again. The continuous spectrum of an operator L
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Figure 1: The spectra of the first harmonic for D = 0.

(a) K ≤ Kc (b) K > Kc

Figure 2: The spectra of the first harmonic for D > 0.

(a) K ≤ K∗ (b) K∗ < K < Kc (c) K = Kc (d) K > Kc

σc(L) consists of those values λ for which λI−L is not surjective. (Here I is the identity operator.)
The continuous spectrum consists of approximate eigenvalues that are neither eigenvalues nor
do they lie in the residual spectrum. Equation 30 can be rewritten in terms of the operator L as

Lb = −(D + iω)b(ω) + K

2

∫ ∞

−∞
b(υ)g(υ)dυ.

The operator L−λI is not surjective for all λ ∈ C such that for an arbitrary function f(ω) there
is no solution b(ω) for the following equation

(L− λI)b(ω) = f(ω)

−(λ+D + iω)b(ω) + K

2

∫ ∞

−∞
b(υ)g(υ)dυ︸ ︷︷ ︸
=B

= f(ω). (35)

If we denote the integral by B again, we see that if λ + D + iω = 0 for some frequency ω in
the support of g(ω), then (35) is solvable only for constant functions f(ω). Thus in this case
we cannot solve (35) for an arbitrary function f(ω). This means that the continuous spectrum
consists at least of eigenvalues λ satisfying λ+D + iω = 0. Thus we have that

{−D − iω : ω ∈ support(g(ω))} ⊆ σc(L).

To see that this subset of σc(L) actually equals the set σc(L), we suppose that λ̂ is not of this
form. Then we can derive the solution

b(ω) = B − f(ω)
λ̂+D + iω

, (36)

18



where B can be determined by self consistency as follows. Substitute the solution (36) into the
equation for B given by (32)

B = K

2

∫ ∞

−∞

B − f(υ)
λ̂+D + iυ

g(υ)dυ.

We rearrange terms to obtain:

B

(
1 − K

2

∫ ∞

−∞

g(υ)
λ̂+D + iυ

dυ

)
︸ ︷︷ ︸

̸=0

= K

2

∫ ∞

−∞

−f(υ)
λ̂+D + iυ

g(ω)dυ,

where the bracketed term is not equal to zero by the assumption that λ̂ is not an eigenvalue and
therefore does not satisfy (33). Thus we can solve for B and hence find a solution b(ω). Since we
found a solution for λ̂, it is not in the continuous spectrum. Therefore the continuous spectrum
is given by

σc(L) = {−D − iω : ω ∈ support(g(ω))} .

Combining the continuous spectrum with the discrete spectrum found in the previous subsection
we can determine when we have stability, neutral stability and instability in the system concern-
ing only the first harmonic. When D = 0 the continuous spectrum lies on the imaginary axis.
We then have two cases for the eigenvalue λ, as illustrated in Figure 1. For coupling equal to the
critical coupling Kc λ = 0 and we have a neutral stability of the first harmonic of the incoherent
solution, as shown in Figure 1a. For coupling strictly greater than Kc λ > 0 implying insta-
bility, as shown in Figure 1b. Thus we expect that the system synchronises for K > Kc as t → ∞.

When D > 0, the continuous spectrum has a negative real part. For the discrete spectrum
we have four cases, as illustrated in Figure 2. In addition to before, now we can have λ < 0. This
is the case when K < Kc, as shown in Figures 2a and 2b. Then both the continuous and discrete
spectrum have negative real parts. Hence we have linear stability. The discrete spectrum is born
when D = −λ, say at coupling K∗, as shown in Figure 2a. The discrete spectrum remains in the
negative real half for coupling strictly smaller then Kc, as shown in Figure 2b. And thus the first
harmonic of the incoherent solution remains linearly stable. In the case of no noise we only had
neutral stability for coupling K ≤ Kc. For the noise case have neutral stability when K = Kc, as
shown in Figure 2c. For coupling greater than Kc the first harmonic of the incoherent solution
becomes unstable. Thus we expect that the system synchronises for K > Kc as t → ∞. Note
that Kc is dependent on D.

Thus starting near the incoherent solution with coupling below the critical coupling, the be-
havior according to the fundamental harmonic differs depending on the presence of noise. In
case of noise the solution always stays close to the incoherent solution. Whereas in the absence
of noise it does not and nor does it go farther and farther away from the incoherent solution.
Thus we do not expect complete synchronisation nor complete incoherence in the noiseless case.

We will continue our analysis of the Kuramoto model in the next Section by considering a
bimodal distribution for the natural frequencies of the oscillators. So far we only considered a
unimodal frequency distribution.
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3 Bimodal Frequency Distribution
In this section we will consider two types of bimodal distributions for the natural frequencies of
the oscillators. We analyse the Kuramoto model for both a Lorentzian and a discrete bimodal
distribution for the natural frequencies. For the latter we include additive noise as discussed in
Section 2. Now that the frequencies are no longer distributed uniformly we will see that we can
have different partially synchronised groups. The results of the time-frequency analysis for the
Kuramoto model are in Subsection 6.3. For the discrete distribution we followed the approach
of Bonilla et al.[17] and for the Lorenzian case we followed the approach of Martens et al. [18].

3.1 Discrete Bimodal Frequency Distribution
Before considering a more complex bimodal frequency distribution, we look at a discrete bimodal
frequency distribution. We consider the Kuromato model with added white-noise as in Section
2. This distribution is studied by, among others, Okuda and Kuramoto [2]; and Bonilla, Neu
and Spigler [17]. This type of distribution is described by

g(ω) = δ(ω − ω0) + δ(ω + ω0)
2

,

where ω are the natural frequencies and δ(x) is the Dirac delta function. Half of the oscillators
have a natural frequency ω0 while the other half has natural frequency −ω0.

We study the Kuramoto model with added white noise as described in Subsection 2.1 with
the only difference that we now consider a different distribution of natural frequencies. To find
the values of K and D for which the model is linearly stable or unstable, we consider again
Equation 33 and find the eigenvalues in case we take the density g(ω) as above.

1 =K

2

∫ ∞

−∞

1
λ+D + iυ

g(υ)dυ

⇒ 1 =K

2
· 1

2

(
1

λ+D + iω0
+ 1
λ+D − iω0

)
⇒ 1 =K

2

(
λ+D

(λ+D)2 + ω2
0

)
⇒ 0 =λ2 +

(
2D − K

2

)
λ+D2 − K

2
D + ω2

0

⇒ 0 =
(
λ+

(
D − K

4

))2

− K2

16
+ ω2

0

The eigenvalues we thus obtain are

λ± = K

4
−D ± 1

4
√
K2 − 16ω0.

Both eigenvalues have negative real parts for sufficiently small coupling:

If K < 2D, then Re(λ−) ≤ Re(λ+) ≤ −D + K

2
< 0.

Thus for K < 2D, the incoherent solution is linearly stable for all ω0. On the other hand, for
sufficiently large coupling, the system has one eigenvalue with positive real part:

If K > 4D, then Re(λ+) ≥ −D + K

4
> 0.
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Thus for K > 4D, the incoherent solution is linearly unstable for all ω0. The type of bifurcation
differs depending on ω0. For ω0 > D, the incoherent solution becomes unstable by a bifurcation
into solutions with time-periodic order-parameter. See for example [17] for a stability analysis
of this branch of solutions.

In the case where ω0 < D, there are additional values for K on the interval 2D < K < 4D
for which the incoherent solution is unstable. These follow from determining where the eigen-
value λ+ becomes positive. Thus we equate λ+ to zero:

0 = −D + K

4
− 1

4

√
K2 − 16ω2

0

⇒16D2 − 8DK +K2 = K2 − 16ω2
0

⇒ K = 2D
(
ω2

0
D2 + 1

)
.

The eigenvalue λ+ becomes positive when

K > Kc = 2D
(
ω2

0
D2 + 1

)
.

Thus when ω0 < D, the incoherent solution becomes unstable for coupling greater than Kc.

3.2 Lorenzian Bimodal Frequency Distribution
We will carry out a stability analysis for the Kuramoto model without noise where the frequencies
are distributed according to the sum of two Lorenzian distributions. We follow the approach
suggested by Ott and Antonsen [11]. The idea is to consider solutions of the density equation
that are of a certain form. The system can then be reduced exactly to a small number of ODE’s.
The resulting system represents only a selection of the solutions to the original system. For
several distributions its bifurcation diagram can be constructed. Ott and Antonsen [11, 18]
motivate their ansatz by noting that both the incoherent solution and the partially synchronised
state are of the form they propose.

3.2.1 Derivation

We consider the noiseless Kuramoto model for j = 1, 2, 3, . . . given by

θ̇j = ωj +Kr sin(ψ − θj)
= ωj + Im

(
ze−iθj

)
= ωj + K

2i
(
ze−iθj − z∗eiθj

)
where we consider the limit as the number of oscillators N goes to infinity. Thus the order
parameter is given by (17) as before:

z = reiψ =
∫ π

−π

∫ +∞

−∞
eiθρ(θ, ω, t)g(ω)dωdθ.

We start with considering the continuity equation for the density of the oscillators

∂ρ

∂t
+ ∂

∂θ
(ρν) = 0,
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into which we substitute the velocity v as follows:

∂ρ

∂t
+ ∂

∂θ

(
ρ

(
ω + K

2i
(
ze−iθ − z∗eiθ

)))
= 0. (37)

Note that this corresponds to the Fokker-Planck equation (15) discussed earlier with D = 0
since we consider the noiseless case here. We look at the Fourier expansion of the density ρ and
take its coefficients cn to be of the form cn = a(ω, t)n. This is the ansatz proposed by Ott and
Antonsen. Solutions of this form are those in the Poisson kernel of the unit circle. There are
some restrictions on a(ω, t). These will be discussed later. The Fourier expansion of ρ that we
consider is

ρ = 1
2π

(
1 +

∞∑
n=1

a(ω, t)neinθ + c.c.

)
, (38)

where c.c. denotes the complex conjugate of the preceding term. The partial derivatives of this
expression with respect to t and θ are as follows

∂ρ

∂t
= 1

2π

( ∞∑
n=1

n
∂a

∂t
an−1einθ + c.c

)

and

∂ρ

∂θ
= 1

2π

( ∞∑
n=1

inaneinθ + c.c

)
.

The continuity equation (37) for ρ then becomes:

0 =

( ∞∑
n=1

n
∂a

∂t
an−1einθ + c.c

)

+

( ∞∑
n=1

inaneinθ + c.c

)(
ω + K

2i
(
ze−iθ − z∗eiθ

))

+

(
1 +

∞∑
n=1

a(ω, t)neinθ + c.c.

)
K

2i
(
−ize−iθ − iz∗eiθ

)
.

Now equating all terms with eiθ we obtain:

0 =a0 ∂a

∂t
+ ωia+ 2K

2i
zia2 + a2(−iz)K

2i
+ K

2i
(−iz∗),

which reduces to

∂a

∂t
+ K

2
(a2z − z∗) + ωia = 0. (39)

The same equation can be obtained equating for the other einθ terms. Thus if a satisfies this
condition, then the Fourier series of ρ(ω, t) as in (38) satisfies the continuity equation.

The conditions on a(ω, t) as assumed by Ott and Antonsen [11] are as follows:
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1. |a(ω, t)| ≤ 1

2. a(ω, 0) is analytically continuable for Im(ω) < 0.

3. |a(ω, t)| → 0 as Im(ω) → −∞.

Ott and Antonsen showed that if a solution to the system described by (39) and (40) satisfies
these conditions for t = 0, then it will satisfy the conditions for all 0 ≤ t < +∞. These conditions
are used to for example apply Fubini’s theorem in simplifying the order parameter to a single
integral over ω (Condition 1). We then calculate this integral by applying the residue theorem
to the integral over a path Γ that lies in the plane Im(ω) < 0 and on the real axis. The integral
we want to calculate is only over the real axis and we can choose the path in Im(ω) < 0 such
that the integral vanishes on it (Conditions 2 and 3).

The order parameter is given by

z =
∫ π

−π

∫ +∞

−∞
eiθρ(θ, ω, t)g(ω)dωdθ

=
∫ π

−π

∫ +∞

−∞
eiθ

1
2π

(
1 +

∞∑
n=1

a(ω, t)neinθ + c.c.

)
g(ω)dωdθ

=
∫ π

−π

eiθ

2π
dθ

∫ ∞

−∞
g(ω)dω +

∫ π

−π

∫ +∞

−∞

1
2π

( ∞∑
n=1

a(ω, t)nei(n+1)θ + c.c.

)
g(ω)dωdθ

=
∫ π

−π

∫ +∞

−∞

1
2π

(
a∗(ω, t)e−i(1−1)θ

)
g(ω)dωdθ

=
∫ +∞

−∞
a∗(ω, t)g(ω)dω, (40)

To further study the system

∂a

∂t
+ K

2
(a2z − z∗) + ωia = 0

z∗ =
∫ +∞

−∞
a(ω, t)g(ω)dω, (41)

we look at a particular distribution. Ott and Antonsen [11] analysed the system for a unimodal
Lorentzian distribution. We now follow the approach of Martens [18] and consider a bimodal
Lorentzian distribution

g(ω) = ∆
2π

(
1

(ω − ω0)2 + ∆2 + 1
(ω + ω0)2 + ∆2

)
.

This is a sum of two Lorentzians which have width parameter ∆ and centre frequencies ±ω0. We
substitute this frequency distribution into (41) and perform the integration. To avoid the singu-
larities of a(ω, t), we will deform the integration path for ω. By the conditions on a, we know
that a does not have singularities on the lower half plane Im(ω) < 0. We will integrate over the
contour Γ given by the real line and a large semi-circle in the lower half plane C−. With ’large’ we
mean its radius goes to infinity, making that the integrand vanishes by Condition 3. The contour
is negatively oriented resulting in a minus sign when calculating the residues. Writing g(ω) as its
partial fraction expansion we will find that it has four poles, two of which lie inside the contour Γ.
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The partial fraction expression of g(ω) is

g(ω) = 1
4πi

(
−1

ω + ω0 + i∆
+ 1
ω + ω0 − i∆

− 1
ω − ω0 + i∆

+ 1
ω − ω0 − i∆

)
,

which has poles ω1,2 = ±ω0 − i∆ inside the contour Γ and poles ω3,4 = ±ω0 + i∆ outside the
contour. These are the only singularities of the integrand that are inside the chosen contour Γ
by the assumptions on a (Condition 2). To perform the integration in (41) we make use of the
Residue Theorem as follows.

z∗ =
∫

Γ
a(ω, t)g(ω)dω −

∫
C−

a(ω, t)g(ω)dω

=
∫

Γ
a(ω, t) 1

4πi

(
−1

ω + ω0 + i∆
+ 1
ω + ω0 − i∆

− 1
ω − ω0 + i∆

+ 1
ω − ω0 − i∆

)
dω

= −1 ·
[
−a(−ω0 − i∆, t) 1

4πi
(2πi) + 0 − a(ω0 − i∆, t) 1

4πi
(2πi) + 0

]
= 1

2
[a(ω0 − i∆, t) + a(−ω0 − i∆, t)]

For convenience we rewrite the order parameter.

z = 1
2

[a∗(ω0 − i∆, t) + a∗(−ω0 − i∆, t)]

= 1
2

(z1 + z2),

where

z1,2 = a∗(±ω0 − i∆, t).

Now we consider the ODE we obtained earlier (39) for a∗ at (±ω0 − i∆, t). We use the notation
in z1 and z2 just introduced. The derivatives of zk with respect to their first arguments are
denoted by żk for k = 1, 2.

ż1 = −K

2

(
1
2

(z1 + z2)∗z2
1 − 1

2
(z1 + z2)

)
− (ω0 − i∆)iz1

= K

4
(
z1 + z2 − (z∗

1 + z∗
2)z2

1
)

− (∆ + iω0)z1

ż2 = −K

2

(
1
2

(z1 + z2)∗z2
2 − 1

2
(z1 + z2)

)
− (−ω0 − i∆)iz2

= K

4
(
z1 + z2 − (z∗

1 + z∗
2)z2

2
)

− (∆ − iω0)z2.

This is the system we will analyse and study bifurcations of. It can be reduced to a three
dimensional system by transforming to polar coordinates. We will do this here before starting
the bifurcation analysis. In particular we change to the polar coordinates z1 = φ1e

iϕ1 and
z2 = φ2e

iϕ2 .

φ̇1e
iϕ1 + φ1ie

iϕ1 ϕ̇1 = K

4
(
φ1e

iϕ1 + φ2e
iϕ2 − (φ1e

−iϕ1 + φ2e
−iϕ2)φ2

1e
2iϕ1

)
− (∆ + iω0)φ1e

iϕ1

φ̇2e
iϕ2 + φ2ie

iϕ2 ϕ̇2 = K

4
(
φ1e

iϕ1 + φ2e
iϕ2 − (φ1e

−iϕ1 + φ2e
−iϕ2)φ2

2e
2iϕ2

)
− (∆ − iω0)φ2e

iϕ2 .
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Multiplying the first equation by e−iϕ1 and the second by e−iϕ2 we obtain

φ̇1 + iφ1ϕ̇1 = K

4

(
φ1 + φ2e

i(ϕ2−ϕ1) − φ3
1 − φ2

1φ2e
i(ϕ1−ϕ2)

)
− (∆ + iω0)φ1 (42)

φ̇2 + iφ2ϕ̇2 = K

4

(
φ1e

i(ϕ1−ϕ2) + φ2 − φ1φ
2
2e
i(ϕ2−ϕ1) − φ3

2

)
− (∆ − iω0)φ2. (43)

For each equation we equate its real parts and introduce the phase difference ψ = ϕ2 − ϕ1:

φ̇1 = K

4
(
φ1 + φ2 cosψ − φ3

1 − φ2
1φ2 cosψ

)
− ∆φ1

= K

4
(1 − φ2

1) (φ1 + φ2 cosψ) − ∆φ1

φ̇2 = K

4
(
φ1 cosψ + φ2 − φ1φ

2
2 cosψ − φ3

2
)

− ∆φ2

= K

4
(1 − φ2

2) (φ1 cosψ + φ2) − ∆φ2.

Similarly we equate the imaginary parts of complex equations above (42,43):

φ1ϕ̇1 = K

4
(
φ2 sin(ϕ2 − ϕ1) − φ2

1φ2 sin(ϕ1 − ϕ2)
)

− ω0φ1

= K

4
(
(φ2 + φ2

1φ2) sin(ϕ2 − ϕ1)
)

− ω0φ1

φ2ϕ̇2 = K

4
(
φ1 sin(ϕ1 − ϕ2) − φ1φ

2
2 sin(ϕ2 − ϕ1)

)
− ω0φ2

= K

4
(
(−φ1 − φ1φ

2
2) sin(ϕ2 − ϕ1)

)
+ ω0φ2.

We divide both sides of first equation by φ1 and both sides of the second by φ2 in order to
calculate ψ̇:

ψ̇ = ϕ̇2 − ϕ̇1

= K

4

(
−φ1 − φ1φ

2
2

φ2
sin(ϕ2 − ϕ1)

)
+ ω0 − K

4

(
φ2 + φ2

1φ2

φ1
sin(ϕ2 − ϕ1)

)
+ ω0

= 2ω0 + K

4

(
−φ1 − φ1φ

2
2

φ2
sin(ψ) − φ2 + φ2

1φ2

φ1
sin(ψ)

)
= 2ω0 − K

4
φ2

1 + φ2
2 + 2φ2

1φ
2
2

φ1φ2
sin(ψ).

We have now reduced the order parameter z to a three dimensional system of ordinary differential
equations. We did this by taking the Ott-Antonsen ansatz as the form of solutions of the
continuity equation for the density of the oscillators. We could then write the order parameter
z in terms of a and obtained an ordinary differential equation describing the evolution of a.
For our bimodal Lorentzian distribution g(ω) we could perform the integration over the product
a(ω, t)g(ω) taking into account where these functions (might) have singularities. Finally we
reduced the system from four dimensions to three by changing to polar coordinates. We thus
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Figure 3: The boundary B(ω0) between linear stablity and no linear stability for the incoherent
state.

obtained the following system.

φ̇1 = K

4
(1 − φ2

1) (φ1 + φ2 cosψ) − ∆φ1

φ̇2 = K

4
(1 − φ2

2) (φ1 cosψ + φ2) − ∆φ2

ψ̇ = 2ω0 − K

4
φ2

1 + φ2
2 + 2φ2

1φ
2
2

φ1φ2
sin(ψ).

A further restriction on the solutions considered by Martens [18] is to only consider symmetric
solutions such that φ1(t) = φ2(t). Then we obtain:

φ̇ = K

4
(1 − φ2) (φ+ φ cosψ) − ∆φ

= K

4
φ

(
1 − 4∆

K
− φ2 + (1 − φ2) cosψ

)
ψ̇ = 2ω0 − K

2
(1 + φ2) sin(ψ).

3.2.2 Bifurcation Analysis around the Incoherent Solution

In the following analysis we look at the stability properties of the system depending on the
parameters of the bimodal Lorentzian distribution. We start by finding the fixed points. For
this we look at the system in its Cartesian coordinates. As a convenience for both the Cartesian
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coordinate system and the polar coordinate system we scale its variables by:

q = φ2

t̃ = K

2
t

∆̃ = 4∆
K

ω̃0 = 4ω0

K
.

This results in

ż1 =
(
z1 + z2 − (z∗

1 + z∗
2)z2

1
)

− (∆̃ + iω̃0)z1 (44)
ż2 =

(
z1 + z2 − (z∗

1 + z∗
2)z2

2
)

− (∆̃ − iω̃0)z2 (45)

and in polar coordinates:

q− 1
2 q̇
K

4
= K

4
q− 1

2
(
1 − ∆̃ − q + (1 − q) cosψ

)
⇒ q̇ = 1 − ∆̃ − q + (1 − q) cosψ

K

2
ψ̇ = K

2
ω̃0 − K

2
(1 + q) sin(ψ)

⇒ ψ̇ = ω̃0 − (1 + q) sin(ψ).

In the following we drop the tildes again. We mean the scaled variables unless mentioned other-
wise. The first points we are interested in our bifurcation analyses are those for which we are in
the incoherent state. Thus those states for which the order parameter z is zero and the oscillators
are not synchronised. In polar coordinates this corresponds to φ1, φ2 = 0 or q = 0. To find the
corresponding eigenvalues we linearize (44, 45). E.g. we drop terms of order 2 and higher.

˙(z1
z2

)
=
(

−(∆ + iω0) + 1 1
1 −(∆ − iω0) + 1

)(
z1
z2

)
.

To find the eigenvalues of the matrix in the equation above we look at its characteristic equation:

(λ+ ∆ + iω0 − 1)(λ+ ∆ − iω0 − 1) − 1 = 0
⇒ (λ+ ∆)2 + ω2

0 − 2(λ+ ∆) = 0
⇒ [(λ+ ∆) − 1]2 − 1 + ω2

0 = 0

⇒ λ± = −∆ + 1 ±
√

1 − ω2
0 .

Thus we have found two eigenvalues λ± for the incoherent state. Whenever the real part of these
eigenvalues is less than zero, the incoherent state is stable. Since Re(λ+) ≥Re(λ−) we look at
when Re(λ+) < 0. There are two cases:

Case 1. For ω0 ≤ 1, Re(λ+) < 0 iff ∆ > 1 +
√

1 − ω2
0 .

Case 2. For ω0 > 1, Re(λ+) < 0 iff ∆ > 1.

Thus the boundary between linear stability and no linear stability (see also Figure 3) is given
the by:

B(ω0) =

{
1 +

√
1 − ω2

0 for ω0 ≤ 1
1 for ω0 > 1.
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4 Chimera State
An interesting phenomenon regarding synchronisation is a chimera state. Systems of coupled
identical oscillators have been observed to spontaneously break up into a synchonised group and
an unsynchronised group [19, 20]. Such states have mostly been found in systems with weak
nonlocal coupling, but they can also exist in systems where this is not the case.

Until recently it was thought that more complex behavior such as partial synchronisation and
incoherence would not occur in systems with identical oscillators [8]. Such systems were expected
to either synchronise or remain in an incoherent state. However, Kuramoto and Battogtokh [1]
recently discovered what we now know as chimera states in such a system.

The model they studied consisted of identical oscillators on a ring that were non-locally coupled.
They observed an apparent stable state in which some oscillators synchronised while others kept
moving incoherently. Abrams and Strogatz later named this a chimera state. To study chimera
states in the Kuramoto model we consider a coupling discussed by Abrams, Mirello, Strogatz and
Panaggio [6, 9]. They say this is the simplest system in which chimeras have been observed so far.

We start by rewriting the model using the Ott-Antonsen ansatz [11] as before and thus make
some assumptions about the form of the solution. The idea is to bifurcate from a system with
uniform global coupling towards a system with stronger coupling within a group than between
groups. In the remaining of this Section we follow the approach as described by Abrams, Mirello
and Strogatz [6].

4.1 Derivation
We divide the population of oscillators into different groups and the coupling we will consider
differs between groups. The inter group coupling is stronger than the intra group coupling. Fur-
thermore we include the phaselag α in the coupling which is the same for each oscillator. We
consider two groups of N oscillators denoted by θ1

i and θ2
i for i = 1, . . . , N . The intragroup

coupling is denoted by K1,1 = K2,2 = µ = 1+A
2 and the intergroup coupling is denoted by

K1,2 = K2,1 = ν = 1−A
2 , where 0 < A ≤ 1 and ν + µ = 1. This assures that µ > ν, e.g. stronger

intergroup coupling than intragroup coupling. For A = 0 the model would equal the original
Kuramoto model. Thus by increasing A from 0 we bifurcate away from global coupling.

The governing equations are

θ̇1
i = ω + K1,1

N

N∑
j=1

sin(θ1
i − θ1

j + α) + K1,2

N

N∑
j=1

sin(θ1
i − θ2

j + α) (46)

θ̇2
i = ω + K2,2

N

N∑
j=1

sin(θ2
i − θ2

j + α) + K2,1

N

N∑
j=1

sin(θ2
i − θ1

j + α). (47)
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We also write the phase lag in terms of β = π
2 − α. This is done since for this type of system

chimeras emerge in the limit β → 0.

θ̇1
i = ω − 1 +A

2N

N∑
j=1

cos(θ1
i − θ1

j − β) − 1 −A

2N

N∑
j=1

cos(θ1
i − θ2

j − β)

θ̇2
i = ω − 1 +A

2N

N∑
j=1

cos(θ2
i − θ2

j − β) − 1 −A

2N

N∑
j=1

cos(θ2
i − θ1

j − β).

Note that as A goes to zero we approach uniform global coupling. Looking at the continuum limit
where the number of oscillators N → ∞, the analysis is similar to what was done when studying
the Kuramoto model with bimodal frequency distribution in Section 3.2. We again use the Ott-
Antonsen ansatz. We now obtain two evolution equations of the densities ρ1 for oscillators in
the first group and ρ2 for oscillators in the second group. Note that the superscripts are moved
down. The continuity equations we consider are:

∂ρσ
∂t

+ ∂

∂θ
(ρσvσ) = 0, for σ = 1, 2. (48)

The velocities v1, v2 are given by

vσ(θ, t) = ω +Kσ,1

∫ π

−π
sin(θσ − θ1 − α) · ρ1(θ1, t)dθ1 +Kσ,2

∫ π

−π
sin(θσ − θ2 − α) · ρ2(θ2, t)dθ2.

(49)

For each group we define the complex order parameter as

zσ(t) = Kσ,1

∫ π

−π
eiθ1 · ρ1(θ1, t)dθ1 +Kσ,2

∫ π

−π
eiθ2 · ρ2(θ2, t)dθ2. (50)

We can rewrite the velocity (49) in terms of the order parameter as follows, where the integrals
are still over the interval from −π to π.

vσ(θ, t) = ω +Kσ,1

∫
1
2i

(
ei(θ1−θσ−α) − e−i(θ1−θσ−α)

)
· ρ1(θ1, t)dθ1

+Kσ,2

∫
1
2i

(
ei(θ2−θσ−α) − e−i(θ2−θσ−α)

)
· ρ2(θ2, t)dθ2

= ω +Kσ,1

∫
1
2i
ei(θ1−θσ−α) · ρ1(θ1, t)dθ1

+Kσ,2

∫
1
2i
ei(θ2−θσ−α) · ρ2(θ2, t)dθ2

−Kσ,1

∫
1
2i
e−i(θ1−θσ−α) · ρ1(θ1, t)dθ1

−Kσ,2

∫
1
2i
e−i(θ2−θσ−α) · ρ2(θ2, t)dθ2

= ω + 1
2i
zσ(t)e−iθσe−iα − 1

2i
z∗
σ(t)eiθσeiα,

where with a ∗ we denote the complex conjugate. Following the approach of Ott and Antonsen,
we consider only densities of the form of a Poisson Kernel:

ρσ(θ, t) = 1
2π

[
1 +

∞∑
n=1

(aσ(ω, t)eiθσ )n +
∞∑
n=1

(a∗
σ(ω, t)e−iθσ )n

]
. (51)
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The function a(ω, t) is assumed to satisfy the same conditions in Section 3.2:

1. |a(ω, t)| ≤ 1

2. a(ω, 0) is analytically continuable for Im(ω) < 0.

3. |a(ω, t)| → 0 as Im(ω) → −∞.

Computing the terms of the continuity equations (48) for densities of this form (51), we obtain
the following:

∂ρσ
∂t

= 1
2π

[ ∞∑
n=1

n [aσ(ω, t)]n−1
eniθȧσ(ω, t) +

∞∑
n=1

n [a∗
σ(ω, t)]n−1

e−inθȧ∗
σ(ω, t)

]
∂ρσ
∂θ

= 1
2π

[ ∞∑
n=1

nianσ(ω, t)eiθ(n−1) −
∞∑
n=1

ni(a∗
σ)n(ω, t)e−iθ(n+1)

]
∂vσ
∂θ

= 1
2i
(
−izσ(t)e−iθe−iα − iz∗

σ(t)eiθeiα
)

− 1
2
(
zσ(t)e−iθe−iα + z∗

σ(t)eθeiα
)

where with θ we denoted θσ. Substituting these terms in the continuity equations (48), we obtain:

0 = ∂ρσ
∂t

+ ∂

∂θ
(ρσvσ)

= 1
2π

[ ∞∑
n=1

n [aσ(ω, t)]n−1
eniθȧσ(ω, t) +

∞∑
n=1

n [a∗
σ(ω, t)]n−1

e−inθȧ∗
σ(ω, t)

]

+ 1
2π

[ ∞∑
n=1

ni(aσ(ω, t))neiθn −
∞∑
n=1

ni(a∗
σ)n(ω, t)e−iθn

]

·
(
ω + 1

2i
zσ(t)e−iθσe−iα − 1

2i
z∗
σ(t)eiθσeiα

)
+ 1

2π

[
1 +

∞∑
n=1

(aσ(ω, t)eiθ)n +
∞∑
n=1

(a∗
σ(ω, t)e−iθ)n

]

·
(

−1
2
[
zσ(t)e−iθe−iα + z∗

σ(t)eiθeiα
])

, for σ = 1, 2.

Equating all coefficients of the eiθ we obtain

0 = ȧσ(ω, t) + ω · iaσ(ω, t) + 2
2i
i(aσ(ω, t))2zσ(t)e−iα − 1

2
z∗
σ(t)eiα − 1

2
(aσ(ω, t))2zσ(t)e−iα

= ȧσ(ω, t) + ω · iaσ(ω, t) + 1
2

(aσ(ω, t))2zσ(t)e−iα − 1
2
z∗
σ(t)eiα, for σ = 1, 2.

Dropping the notation of dependence on ω and t this becomes:

daσ
dt

+ ωiaσ + 1
2
(
a2
σzσe

−iα − z∗
σe
iα
)

= 0, for σ = 1, 2. (52)

Equating the coefficients for eknθ any k ̸= 0 results in the same equation (52). In the case where
k = 0 we obtain a the trivial statement 1

2izσaσie
−iα + 1

2iz
∗
σaσie

iα − 1
2zσaσe

−iα − 1
2z

∗
σaσe

iα = 0.
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Thus if these equations (52) are satisfied together with the conditions for a, then ρσ as in (51)
is a solution to our system given by (46,47).

We can rewrite the order parameter that appears in (52) in terms of aσ as well by substituting
the Ott-Antonsen ansatzes (51) into (50).

zσ(t) =Kσ,1

∫ π

−π
eiθ1 · 1

2π

[
1 +

∞∑
n=1

(a1(t)eiθ1)n +
∞∑
n=1

(a∗
1(t)e−iθ1)n

]
dθ1

+Kσ,2

∫ π

−π
eiθ2 · 1

2π

[
1 +

∞∑
n=1

(a2(t)eiθ2)n +
∞∑
n=1

(a∗
2(t)e−iθ2)n

]
dθ2, for σ = 1, 2.

Most of the terms will be zero. For any m ̸= 0 we namely have that the integral
∫ π

−π e
imθσdθσ = 0.

Thus we we obtain:

zσ(t) =Kσ,1

∫ π

−π
eiθ1 · 1

2π
a∗

1(t)e−iθ1dθ1

+Kσ,2

∫ π

−π
eiθ2 · 1

2π
a∗

2(t)e−iθ2dθ2

=Kσ,1 · a∗
1(t) +Kσ,2 · a∗

2(t), for σ = 1, 2.

Substituting these expressions for z1 and z2 into (52) we get

0 =daσ
dt

+ ωiaσ + 1
2
a2
σe

−iα (Kσ,1 · a∗
1 +Kσ,2 · a∗

2) (53)

− 1
2
eiα (Kσ,1 · a1 +Kσ,2 · a2) , for σ = 1, 2.

We rewrite (53) into polar coordinates (φσ, ϕσ) where we take aσ = φσe
−iϕσ for σ = 1, 2 as

follows:

0 = − iφσe
−iϕσ

dϕσ
dt

+ e−iϕσ
dφσ
dt

+ ωiφσe
−iϕσ

+ 1
2
φ2
σe

−2iϕσe−iα (Kσ,1 · φ1e
iϕ1 +Kσ,2 · φ2e

iϕ2
)

− 1
2
eiα
(
Kσ,1 · φ1e

−iϕ1 +Kσ,2 · φ2e
−iϕ2

)
⇒ 0 = − iφσ

dϕσ
dt

+ dφσ
dt

+ ωiφσ

+ 1
2
φ2
σe

−iϕσe−iα (Kσ,1 · φ1e
iϕ1 +Kσ,2 · φ2e

iϕ2
)

− 1
2
eiϕσeiα

(
Kσ,1 · φ1e

−iϕ1 +Kσ,2 · φ2e
−iϕ2

)
, for σ = 1, 2, (54)

where in the last step we multiplied both sides by e−iϕσ . Now equating imaginary parts we
obtain:

0 = − φσ
dϕσ
dt

+ ωφσ

+ 1
2
φ2
σφ1Kσ,1 sin(ϕ1 − ϕσ − α) + 1

2
φ2
σφ2Kσ,2 sin(ϕ2 − ϕσ − α)

− 1
2
φ1Kσ,1 sin(ϕσ + α− ϕ1) − 1

2
Kσ,2φ2 sin(ϕσ + α− ϕ2), for σ = 1, 2.
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For σ = 1 this simplifies to

0 = − φ1
dϕ1

dt
+ ωφ1

− 1
2
φ2

1φ1K1,1 sin(α) + 1
2
φ2

1φ2K1,2 sin(ϕ2 − ϕ1 − α)

− 1
2
φ1K1,1 sin(α) − 1

2
φ2K1,2 sin(ϕ1 + α− ϕ2)

= − φ1
dϕ

dt
+ ωφ1 − φ2

1 + 1
2

(φ1K1,1 sin(α) + φ2K1,2 sin(ϕ2 − ϕ1 − α)) .

Similarly for σ = 2 we obtain

0 = −φ2
dϕ2

dt
+ ωφ2 + φ2

2 + 1
2

(φ1K2,1 sin(ϕ1 − ϕ2 − α) − φ2K2,2 sin(α)) .

Equating real parts of (54):

0 =dφσ
dt

+ 1
2
φ2
σφ1Kσ,1 cos(ϕ1 − ϕσ − α) + 1

2
φ2
σφ2Kσ,2 cos(ϕ2 − ϕσ − α)

− 1
2
φ1Kσ,1 cos(ϕσ + α− ϕ1) − 1

2
Kσ,2φ2 cos(ϕσ + α− ϕ2), for σ = 1, 2.

For σ = 1 this simplifies to

0 =dφ1

dt
+ 1

2
φ2

1φ1K1,1 cos(−α) + 1
2
φ2

1φ2K1,2 cos(ϕ2 − ϕ1 − α)

− 1
2
φ1K1,1 cos(α) − 1

2
K1,2φ2 cos(ϕ1 + α− ϕ2),

=dφ1

dt
+ φ2

1 − 1
2

(φ1K1,1 cos(α) + φ2K1,2 cos(ϕ2 − ϕ1 − α)).

Similarly for σ = 2 we obtain

0 = dφ2

dt
+ φ2

2 − 1
2

(φ1K2,1 cos(ϕ1 − ϕ2 − α) + φ2K2,2 cos(α)).

We now continue with the analysis of this system as done by [6].

4.2 Analysis of Chimera State
In the previous subsection we obtained the equations describing the evolution of the oscilla-
tor densities for each group. We now consider the case where one of the groups is perfectly
synchronised. The dynamics for group 1 is described by the equations

0 =dφ1

dt
+ φ2

1 − 1
2

(φ1K1,1 cos(α) + φ2K1,2 cos(ϕ2 − ϕ1 − α)) (55)

0 = − φ1
dϕ1

dt
+ ωφ1 − φ2

1 + 1
2

(φ1K1,1 sin(α) + φ2K1,2 sin(ϕ2 − ϕ1 − α)) , (56)

and the dynamics for group 2 is described by

0 = dφ2

dt
+ φ2

2 − 1
2

(φ1K2,1 cos(ϕ1 − ϕ2 − α) + φ2K2,2 cos(α)) (57)

0 = −φ2
dϕ2

dt
+ ωφ2 + φ2

2 + 1
2

(φ1K2,1 sin(ϕ1 − ϕ2 − α) − φ2K2,2 sin(α)) . (58)
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Recall that we assumed solutions to the continuity equations for each oscillator density ρ1, ρ2
are of the form given by (51). Suppose we assume that all oscillators in group 1 are in perfect
synchrony. Then for some θ1 the value of the oscillator density ρ1 should go to 1 and for all other
values of θ1 it should go to 0. That is, all oscillators in group 1 are nearly at the same phase.
So ρ1 should approximate the delta function as the number of oscillators goes to infinity. In our
polar coordinates the oscillator density is rewritten to

ρ1(θ1, t) = 1
2π

[
1 +

∞∑
n=1

(φ1e
iθ1−iϕ1)n +

∞∑
n=1

(φ1e
iϕ1−iθ1)n

]
.

= 1
2π

∞∑
n=−∞

φn1 e
in(θ1−ϕ1). (59)

Without loss of generality we can assume that the oscillators in group 1 are synchronised at
θ1 = ϕ1. Then (59) goes to the delta function δ(θ1 − ϕ1) for φ1 → 1,

ρ1(θ1, t) →
∞∑

n=−∞
δ(θ1 − ϕ1 − 2πn)

=δ(θ1 − ϕ1).

Thus taking φ1 = 1 corresponds to perfect synchronisation of the oscillators in group 1. Then
φ̇1 = 0 and Equation 55 is trivially satisfied while Equation 56 reduces to

0 = − dϕ1

dt
+ ω − µ sin(α) + φ2ν sin(ϕ2 − ϕ1 − α). (60)

Note that we substituted the intergroup coupling K1,1 = K2,2 = µ and the intragroup coupling
K1,2 = K2,1 = ν. The dynamics for group 2 given by Equations 57 and 58 reduce to

0 = dφ2

dt
+ φ2

2 − 1
2

(ν cos(ϕ1 − ϕ2 − α) + φ2µ cos(α)) (61)

0 = −φ2
dϕ2

dt
+ ωφ2 + φ2

2 + 1
2

(ν sin(ϕ1 − ϕ2 − α) − φ2µ sin(α)) . (62)

We can rewrite the system (60,61,62) in terms of r = φ2 and ψ = ϕ1 − ϕ2 as follows.

0 = − dϕ1

dt
+ ω − µ sin(α) − rν sin(ψ + α)

0 =dr

dt
+ r2 − 1

2
(ν cos(ψ − α) + rµ cos(α))

0 = − r
dϕ2

dt
+ ωr + r2 + 1

2
(ν sin(ψ − α) − rµ sin(α)) .

We can rewrite these equations to obtain expressions for the derivatives with respect to time of
r and ψ = ϕ1 − ϕ2:

ṙ = dr

dt
=1 − r2

2
(rµ cos(α) + ν cos(ψ − α))

ψ̇ = dψ

dt
=dϕ1

dt
− dϕ2

dt

=ω − µ sin(α) − rν sin(ψ + α) − ω − r2 + 1
2r

(ν sin(ψ − α) − rµ sin(α))

=r2 + 1
2r

(rµ sin(α) − ν sin(ψ − α)) − µ sin(α) − rν sin(ψ + α). (63)

33



Now we look at where the system has a fixed point (e.g. ṙ = 0 and ψ̇ = 0). Firstly ṙ = 0 when
r = 1. Substituting this in the equation for ψ̇ we find ψ̇|r=1 = −ν sin(ψ−α)−ν sin(ψ+α). Since
ν > 0, this expression is zero for ψ = nπ for n ∈ Z. The fixed point (r, ψ) = (1, 0) corresponds
to the perfectly synchronised state of all oscillators.

The fixed point (r, ψ) = (1, π) corresponds to the state in which the oscillators in group 2
are perfectly synchronised with each other, but not with group 1. The two synchonised groups
are actually anti-phase. We observed this behavior in our numerical experiments as well. Each
of the order parameters φ1 and φ2 is close to 1, yet the order parameter over all the oscillators
together is close to 0.

Apart from the trivial fixed point there may exist fixed points that correspond to the chimera
states. In a chimera state one of the order parameters, say φ1, equals 1 while the other order
parameter φ2(= r) does not equal 1. This means that the oscillators in group 1 are completely
synchronised while those in group 2 are not.

Thus we are looking for a fixed point where r ̸= 1 and where the other order parameter still has
φ1 = 1. From ṙ = 0 and r ̸= 1 we obtain

µr cos(α) + ν cos(ψ − α) = 0.

Substituting the expressions in terms of A for µ and ν and solving for A:

1 +A

2
r cos(α) + 1 −A

2
cos(ψ − α) = 0

⇒Ar cos(α) + r cos(α) + cos(α− ψ) −A cos(α− ψ) = 0
⇒A[r cos(α) − cos(α− ψ)] = −r cos(α) − cos(α− ψ)

⇒A = r cos(−α) + cos(−α+ ψ)
cos(−α+ ψ) − r cos(−α)

.

We make the substitution α = π
2 − β:

A = sin(β + ψ) + r sin(β)
sin(β + ψ) − r sin(β)

.

The other condition of a fixed point is that ψ̇ = 0. Thus we take the expression for ψ̇ as in (63);
and substitute α = π

2 − β, µ = 1+A
2 and ν = 1−A

2 . Then we substitute the expression for A just
obtained. The calculations can be found in Appendix A. We obtain:

r2 = sin(2β + ψ)
sin(2β − ψ) − 2 sin(ψ)

.

Since r = φ2 is a partial order parameter it takes on values between 0 and 1. Thus we consider
the positive solution for r. Recall that φ2 came from writing a2 in terms of its polar coordinates,
where φ ≥ 0 is its radius. So the order parameter for the second group is

r =

√
sin(2β + ψ)

sin(2β − ψ) − 2 sin(ψ)
.
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Figure 4: Here we have plotted 363 trajectories of (64) from different starting points (blue circles)
until end time T = 104. The end of each trajectory is indicated with a blue solid diamond. The
trajectories end up either at stable chimera or at the fixed point (synchronised state). The
coupling parameter is A = 0.2, and the phase lag β = 0.1

initial point

end point

stable chimera

synchronised state

4.3 Bifurcation Analysis for Chimera State
We have obtained an expression for the order parameter of the oscillators in group σ = 2 which
we can use to study the dynamics of this group. The system we consider in this Subsection was
found in the previous Subsection (63) and is given by

ṙ = f1(r, ψ) =1 − r2

2
(rµ cos(α) + ν cos(ψ − α))

ψ̇ = f2(r, ψ) =r2 + 1
2r

(rµ sin(α) − ν sin(ψ − α)) − µ sin(α) − rν sin(ψ + α),

in terms of β = π
2 − α this becomes:

ṙ = f1(r, ψ) =1 − r2

2
(rµ sin(β) + ν sin(β + ψ))

ψ̇ = f2(r, ψ) =r2 + 1
2r

(rµ cos(β) + ν cos(β + ψ)) − µ cos(β) − rν cos(ψ − β). (64)

4.3.1 Phase Plane Analysis

We study the phase plane of the system given by (64) for different values of the coupling param-
eter A. Recall that setting A = 0 would correspond to the original Kuramoto model. As A is
increased we bifurcate from uniform coupling towards pure intergroup coupling. In order to al-
low for easy comparison with the results of Abrams, Mirello and Strogatz [6], we use parameters
corresponding to those in their order parameter plots.
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Figure 5: Here we have plotted 363 trajectories of (64) from different starting points (blue circles)
until end time T = 104. The end of each trajectory is indicated with a blue solid diamond. The
trajectories end up either in the limit cycle (breathing chimera) or the fixed point (synchronised
state). With the limit cycle we mean the cycle on which several of the blue diamonds are spread
out. Trajectories inside the limit circle move away from the unstable point (unstable chimera)
towards the limit cycle as well. The coupling parameter is A = 0.28, and the phase lag β = 0.1

initial point

end point

breathing chimera

synchronised state

unstable chimera

We start by considering the parameters A = 0.2 and β = 0.1 in Figure 4. Each paths starting
point is indicated by a blue open circle. The ends are indicated by blue filled diamonds. The
stable points / cycles could thus be found by looking for solid blue diamonds. First of all we
can confirm the trivial fixed point where all oscillators are synchronised. When all oscillators
are synchronised, the phase difference between the groups ψ equals 0 and order parameter of
the second group r equals 1. Thus we find this point at coordinates r cos(ψ) = 1, r sin(ψ) = 0.
Another point to which several paths converge is indicated as a stable chimera. At this point
the order parameter of the second group r < 1 and the phase difference between the groups
ψ > 0. Recall that we set the order parameter of the first group to 1. Thus we observed one
synchronised group in coexistence with an incoherent group, e.g. a chimera state.

The second set of parameters we consider are A = 0.28 and β = 0.1. The phase plane is
shown in Figure 5. This phase plane differs from that in Figure 4 in that the chimera is now
unstable. Trajectories starting from or close to the chimera now move outwards and towards
the limit cycle that is called ’breathing chimera’. We can see that several trajectories have their
endpoints on this limit cycle around the chimera by the blue diamonds. The completely syn-
chronised state is stable as well. Most trajectories end up in this state.

As we increase the coupling parameter A to 0.35, the limit cycle increases its period. The
phase plane is shown in Figure 6. We also notice that the trajectory starting at (r, ψ) = (1, π)
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Figure 6: Here we have plotted 363 trajectories of (64) from different starting points (blue circles)
until end time T = 104. The end of each trajectory is indicated with a blue solid diamond. The
trajectories end up either in the limit cycle (breathing chimera) or the fixed point (synchronised
state). Trajectories inside the limit cycle move away from the unstable point (unstable chimera)
towards the limit cycle as well. This is more clear now that the limit cycle is greater than in
Figure 5. Note the presence of an unstable fixed point, namely for r = 1, ψ = π. Thus the two
groups are synchronised with a phase difference of ϕ between them. The coupling parameter is
A = 0.35, and the phase lag β = 0.1

initial point

end point

two synchronised
groups

breathing chimera

synchronised state

unstable chimera

stays there in this simulation. This state corresponds to two groups synchronised in anti-phase
with each other. Trajectories slightly perturbed from this do however still go to the synchronised
state.

4.3.2 Bifurcation Curves

We will linearise the system around the fixed solution where φ1 = 1; and φ2 = r and ψ are
constant. To find where the bifurcations occur we summarise the approach of Abrams, Mirello
and Strogatz [6] and look for Saddle-Node bifurcations as well as Hopf Bifurcations. In case of
the Saddle-Node bifurcation we need to find where the determinant of the Jacobian is zero. In
case of the Hopf bifurcation need to find where the trace of the Jacobian is zero and in addition
the determinant of the Jacobian is positive. We linearise (64) around the fixed points that satisfy

A =sin(β + ψ) + r sin(β)
sin(β + ψ) − r sin(β)

r =

√
sin(2β + ψ)

sin(2β − ψ) − 2 sin(ψ)
. (65)
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Figure 7: "Stability diagram for chimera states. Bifurcation curves: saddle-node (dotted line)
and supercritical Hopf (solid line), both found analytically; homoclinic (dashed line), found nu-
merically." Source: [6].

The partial derivatives are as follows:

∂f1

∂r
= −r(rµ sin(β) + ν sin(β + ψ)) + 1 − r2

2
(µ sin(β))

∂f1

∂ψ
= −1 − r2

2
ν cos(β + ψ)

∂f2

∂r
= rµ cos(β) − 1 − r2

2r2 ν cos(β + ψ) − ν cos(ψ − β)

∂f2

∂ψ
= r2 + 1

2r
(−ν sin(β + ψ)) + rν sin(ψ − β).

Its Jacobian J is given by

J =

∂f1
∂r

∂f1
∂ψ

∂f2
∂r

∂f2
∂ψ

 .

Setting the determinant of the Jacobian to zero, Abrams, Mirello and Strogatz [6] find that this
simplifies to

sin(β) + sin(2β + ψ)[sin(β − 2ψ) + 2 sin(β + 2ψ)]
sin(2β − ψ) + 2 sin(ψ)

= 0,

where they used the expressions for A and r we found above (65). They find an approximation
for the root ψ in terms of β and substitute this into the expression for A to obtain the curve for
the saddle node bifurcation. The numerical curve is shown in Figure 7. Similarly the Hopf curve
is found by setting the trace of the Jacobian to zero.
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Figure 7 shows that the appearance of chimera states depends on the phase lag and the in-
ter/intra group coupling. For a chimera state to appear, β should be small (corresponding to
sufficient phase lag α = π/2 − β). At β = 0 both fully synchronised states and the asymmet-
ric states may appear [8]. These states correspond to the case where r = 1. Thus the order
parameters of each of the groups is 1. There are two types of states for which this holds. Ei-
ther all oscillators are synchronised in phase (r = 1 and ψ = 0) or oscillators within each group
are synchonised while the groups are not synchonised in phase with each other (r = 1 and ψ = π).

As we increase β from 0, two bifurcations appear. An unstable chimera bifurcates from the
fully synchonised state (r = 1 and ψ = 0). Secondly, a stable chimera bifurcates from the asy-
metric state (r = 1 and ψ = π). If β is increased further a saddle node bifurcation occurs and
the previously stable chimera becomes unstable.

There is another way through which the stable chimera state loses its stability. Namely through
a Hopf bifurcation followed by a homoclinic bifurcation. If β > 0 small enough and increase
from 0 < A < 2 −

√
3, we encounter a supercritical Hopf bifurcation around A = 2 −

√
3. The

state observed after this bifurcation is referred to as a breathing chimera. The order parameter
of the incoherent group reiψ follows a limit cycle in the complex plane [8]. The diameter of this
limit cycle increases as A increases. When increasing A even further, we encounter a homoclinic
bifurcation. The breathing chimera disappears as the limit cycle of its order parameter collides
with the unstable chimera state.

Recall that a value of A close to zero corresponds to a system where the coupling is close to
uniform. On the other hand, a value of A close to 1 corresponds to a system with intergroup
and no intra group coupling. From Figure 7 we conclude that we need coupling that is close to
uniform coupling to observe stable chimera’s.

5 Time-frequency Analysis
We will introduce time-frequency analysis based on wavelets. This method works especially well
for analysing rapidly varying dynamics. It works similarly to the windowed Fourier transform
but has some advantages which we will discuss here. In principle the analysis of frequencies is
mathematically defined for infinite time signals. The limitations of this type of analysis done on
finite time signals have been described by Carmona [21].

In our time-frequency analysis we will analyse the order parameter that was derived earlier,
i.e.

reiψ = 1
N

N∑
j=1

eiϕj .

We summarise both the basic and windowed Fourier transforms first to motivate the use of
wavelets for our analysis.

5.1 Basic Fourier Transform
The basic Fourier transform decomposes a signal, a complex time signal in our case, into its
frequencies. The Fourier transform expresses a signal as a sum of sinusoids. This results in
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a decomposition of frequencies. If a certain frequency is present in a signal, the Fourier rep-
resentation will have a peak at this frequency. There is no information about the location in
time or the duration of this frequency. We only know if a frequency is present in the signal or not.

Thus there is no time related information. However, in our problem we would like to anal-
yse exactly that. We are interested in the occurrence of synchronisation in the system, therefore
we need the present frequencies to be linked the time at which they appeared.

5.2 Windowed Fourier Transform
The windowed Fourier transform uses the same principles but instead of looking at the signal as a
whole, it is split up into different windows. The function is multiplied by some window function
that is localized in time. Each window is then analysed separately. Thus obtaining for each
window information about the present frequencies. The difficulty in this analysis is choosing the
window size. For if the windows are too small, the frequency might not be measured accurately.
Yet if the windows are too wide, we obtain less information about the time related to the
frequencies. This is known as Heisenberg’s uncertainty principle.

5.3 Continuous Wavelet Transform
The disadvantage of using fixed window functions is the information obtained is located at uni-
formly distributed points in time as well as uniformly distributed points in frequency. Morlet and
Grosmann therefore developed a theory using basis functions that are localised in both time and
frequency similar to what Gabor had developed previously. The basis that Morlet and Grossman
used in addition allowed for a non-uniform coverage in the time-frequency space [22].

Instead of decomposing the signal by using sinusoids, we will use wavelets. The main differ-
ence with sinusoids is that wavelets are localised on a finite time interval only. When analysing
for a certain frequency this wavelet is stretched or shrunk and thus automatically adjusts its win-
dow. The adaptation of wavelets in the method ensures that the length of the window is adjusted
according to the frequency. This way rapid variations are better captured. Whereas events that
happen on short timescales, e.g. timescales less than the length of the window, would be missed
by the original time-frequency method. The continuous wavelet transform works especially well
to analyse signals with a big variation between the frequencies present.

The mother wavelet we will consider in our analysis is the Analytic Morlet wavelet. This wavelet
is described in for example [23]. The mother wavelet is a generator function ψ(t) that will be
scaled and shifted in the following way:

ψa,b(t) = a−1/2ψ

(
t− b

a

)
,

where a > 0, b are real. The mother wavelet can be scaled by varying a and shifted by varying
b. The factor a−1/2 ensures that regardless of its scaling, each wavelet has the same length ||ψ(t)||.

The Analytic Morlet mother wavelet ψ(t) is given by

ψ(t) = π−1/4eiω0te−t2/2.

The daughter wavelets are then generated by transforming and scaling the mother wavelet. The
parameter ω0 controls the number of local cycles. We take ω0 = 6 according to [23] to satisfy
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the admissibility condition. The admissible condition requires that in order to be considered
a wavelet, an integrable function should have an average of zero [24]. For more details on for
example the minimum scaling and spacing used by the continuous wavelet transform that is
implemented here, we refer to the documentation of Matlabs Wavelet Toolbox [12, 13]. The
scaling factor σ determines how much we stretch or compress the mother wavelet. The wavelet
transform for a signal S(t) is given by

LψS (a, b) = ⟨f, ψa,b⟩ = a−1/2
∫ ∞

−∞
S(t)ψ∗

(
t− b

a

)
dt,

where we denoted the complex conjugate of ψ(t) by ψ∗(t). The continuous wavelet transform
for the signal S(t) = e2πυti is for example given by

LψS (a, b) = a−1/2
∫ ∞

−∞
e2πυtiψ∗

(
t− b

a

)
dt

= a−1/2 · a · e2πυbi
∫ ∞

−∞
e2π(aυ)siψ∗ (s) ds

= a1/2e2πυbiψ̄∗(aυ),

where the Fourier transform ψ̄(aυ) of the Analytic Morlet wavelet is given by

ψ̄(aυ) = π−1/4H(υ)e−(aυ−ω0)2/2.

Here H(υ) is the Heaviside step function (H(υ) = 1 if υ > 0, H(υ) = 0 otherwise). We will be
interested in the modulus of this transform which is given by

|LψS (a, b)| = a1/2π−1/4H(υ)e−(aυ−ω0)2/2.

5.4 Time-frequency Analysis: Some Examples
To demonstrate the use of the time-frequency analysis that will be used to analyse the Ku-
ramoto model we first introduce a few examples. Firstly consider the time signal given simply
by S(t) = eit. Its graph and time-frequency plot are shown in Figure 8. The highest amplitude
frequencies are colour coded in yellow. The lowest amplitude frequencies are coloured dark blue.
In this case we observe a yellow constant line indicating that the signal has a constant frequency.

The frequency is normalised and given in cycles per sample. We are mainly interested in the
presence of a dominant frequency. This presence indicates synchronisation. At what frequency
these synchronised oscillators are then moving is of less interest. We can however convert the
normalised frequency to frequencies again by dividing by the time step that was taken. In the
case of the sine as well as in following analysis we take a time step ∆t = 0.1. Thus we calculate
the dominant frequency in Figure 8b as follows: f ≈ 0.0156/0.1 = 0.156, or 0.98/2π.

Now consider the time signal give by S(t) = ei(t+0.1t2). Its graph is given in Figure 9a. The
frequency of the signal increases in time, as can be seen in the time-frequency plot in Figure
9b. Note that the normalized frequency axis has logarithmic scaling. We compute the time by
multiplying the time in samples (X-axis in time-frequency plots) by the time step.
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Figure 8: An example to demonstrate the time-frequency analysis. We analyse the signal S(t) =
eit for 0 < t < 30.
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(a) Path of S(t) in the complex plane (top) and
along the real axis (bottom). (b) time-frequency plots of S(t) showing both

the positive component (top) and negative
component (bottom).

Figure 9: An example to demonstrate the time-frequency analysis. We analyse the signal S(t) =
ei(t+0.1t2) for 0 < t < 30.
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(a) Path of S(t) in the complex plane (top) and
along the real axis (bottom). (b) time-frequency plots of S(t) showing both

the positive component (top) and negative
component (bottom).

6 Numerical Solutions
In this Section we will simulate a large number of oscillators for the different models discussed
in this thesis. To simulate the Kuramoto model with noise, we use the Monte Carlo method
together with the Euler-Maruyama method. We simulate many trajectories for each of which
we add the appropriate white noise term at each time step. For each of these trajectory we
then find the value of the order parameter at every time point. The average of all those order
parameters is then plotted and analysed by time-frequency analysis. We follow the sectioning as
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before. We start with the Original Kuramoto model in Subsection 6.1, secondly we consider the
Kuramoto model with added white noise in Subsection 6.2, thirdly we consider the Kuromoto
model with a bimodal frequency distribution in Subsection 6.3 and conclude with the model that
was discussed in Section 4 in which we expect a chimera state in Subsection 6.4.

6.1 The Original Kuramoto Model
We consider the original Kuramoto model and perform time-frequency analysis on the path of
the complex order parameter. We let the initial phases be uniformly distributed, thus we start
close to the incoherent solution. We check its stability by increasing K from zero. The natural
frequencies are taken from a Lorenzian distribution with width parameter ∆. We can calculate
the critical coupling using the formula that was derived earlier (12). The critical coupling is thus
given by Kc = 2∆.

In our first experiment we take width parameter ∆ = 0.025 and mean frequency ω0 = 0.3.
Usually a zero mean frequency is taken for simplification, since we can without loss of generality
move into a moving frame of the actual frequency. We take a non-zero mean frequency such
that we can apply time-frequency analysis on the signal. The critical coupling in the limit of
infinitely many oscillators is Kc = 2 · 0.025 = 0.05. We therefore consider coupling constants
K = 0.04 < Kc and K = 0.1 > Kc. For coupling larger than Kc, we can use Equation 13 as
derived by Kuramoto to determine the value of the radial or the order parameter:

r =
√

1 − 0.05
0.1

= 1
2

√
2 ≈ 0.71.

We attempt to confirm these values for the critical coupling as well as the supposed value of r by
simulating the oscillators and calculating the order parameter. We then perform time-frequency
analysis to confirm incoherence or synchronisation and to get familiar with the application of this
method. Figure 10 shows the radial of the order parameter as well as the time-frequency analysis
of the complex order parameter for sufficient coupling K = 0.1 > Kc. We increase the number
of oscillators from top to bottom and notice that the radial of the order parameter approaches
the value r = 0.71 that was computed with Kuramoto’s formula. So if we want a certain degree
of synchronisation 0 < r < 1, then we can calculate the required coupling that should be present
for the desired level of synchronisation to appear.

For completion we also look at a value for the coupling for which the Kuramoto model does
not synchronise. In Figure 11 the oscillators have similar natural frequencies and there is cou-
pling between them. Yet the radius r of the order parameter stays very small. The oscillators are
close to synchronisation in frequency, but not synchronised in phase at all. Had there not been
any coupling present between the oscillators, then each of them would move with its own natural
frequency and the time-frequency plot would show several yellow and / or light blue lines. The
time-frequency plot now indicates that the frequencies of the oscillators change over time.

Considering now a uniform discrete distribution for the oscillators and no noise. As a mean
frequency we take ω0 = 0.3. Thus all oscillators have this frequency. We consider 100 oscillators
again and take a coupling K = 0.1. The results are shown in Figure 12. All oscillators synchro-
nise quickly in both frequency and phase. The radius of the order parameter goes to 1, indicating
that all oscillators have the same phase. The clear straight yellow line in the time-frequency plot
indicates one dominant frequency.
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Figure 10: Simulations of the Kuramoto model with Lorenzian distribution (ω0 = 0.3, ∆ = 0.025)
with coupling strength K = 0.1.
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(a) Paths of the radial of the order parameter for simulations
of the Kuramoto model as well as a line indicating the value of
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(c) Path of the order parameter in the complex
plane for 1000 oscillators. See (d) for its time-
frequency analysis.

(d) time-frequency plots of for the order pa-
rameter z = reiψ corresponding to the bot-
tom plot of 1000 oscillators showing both the
positive component (top) and negative compo-
nent (bottom). We note one dominant fre-
quency in the positive direction at approxi-
mately 0.57.5 · 0.1 ≈ 0.3/2π.
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Figure 11: Simulations of the Kuramoto model with Lorenzian distribution (ω0 = 0.3, ∆ = 0.025)
with coupling strength K = 0.04 and N = 1000 oscillators.
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(c) Time-frequency plots of for the order
parameter z. The dominant frequencies
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0 200 400 600 800 1000

-8

-6

-4

-2

0

2

4

6

8

(d) Distribution of the natural frequen-
cies

Figure 12: Simulations of the Kuramoto model with unimodal discrete distribution (ω0 = 0.3)
with coupling strength K = 0.1, noise strength D = 0 and N = 1000 oscillators.
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6.2 The Kuramoto Model with added White-Noise
We now consider the Kuramoto model where a white-noise term is added as described in Section
2. We would like to compare the results to those in [4]. Thus we take the parameters corre-
sponding to theirs. The noise strength we consider is D = 1, runtime T = 20, coupling strength
K = 4. The initial phases are uniformly distributed and all natural frequencies equal zero. The
variance we found when simulating 100 trajectories of 1000 oscillators is 1.018 · 10−4. We show
the radius of the order parameter in Figure 13a as well as a close up between t = 15 and t = 18
in Figure 13b. From the last Figure we observe that 0.792 < r < 0.795 on this interval. A similar
range was found in [4] on this interval (0.788 < r < 0.795).

Figure 13: Simulations of the Kuramoto model with unimodal discrete distribution (ω0 = 0)
with coupling strength K = 4 and noise strength D = 1. (Only ω0 is different with respect to
Figure 14.)
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(a) Average paths of the radial of the order parame-
ter for simulations of the Kuramoto model for 1000
oscillators over 100 trajectories.
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In order to apply time-frequency analysis on the complex order parameter, we simulate os-
cillators with natural frequency ω0 = 2. We do this to be able to detect a frequency, but as
we can imagine this as moving into a rotating frame, it does not affect the behaviour of the
oscillators. We can see this by comparing the graphs of r in both cases to see that Figures 13a
and 14a are nearly identical. The plots of Figure 14 were produced by taking 102 trajectories of
103 oscillators and resulted in a variance of 9.997 · 10−5.
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Figure 14: Simulations of the Kuramoto model with unimodal discrete distribution (ω0 = 2)
with coupling strength K = 4 and noise strength D = 1. (Only ω0 is different with respect to
Figure 13.)
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(a) Average paths of the radial of the order parameter for sim-
ulations of the Kuramoto model for 1000 oscillators over 100
trajectories.
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(b) Average paths of the order parameter for simulations of the
Kuramoto model for 1000 oscillators over 100 trajectories.
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(d) Plots of all 100 trajectories.

6.3 Bimodal Frequency Distribution
Now we consider a bimodal frequency distribution with central frequencies 0.2 and 0.5; and
width parameter 0.015. The initial phases are uniformly distributed, the coupling strength is
0.15 and the noise strength is D = 0. In Figure 15 the corresponding plots are shown. The path
of the radius of the order parameter over all oscillators oscillates between 0 and 0.9 while each
of the radii of the partial order parameters oscillates only slightly between 0.8 and 0.9. The two
dominant frequencies can also be extracted from the order parameter. The path of the order
parameter in time is shown in Figure 15b and its time-frequency analysis is shown in Figure
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Figure 15: Simulations of the Kuramoto model with bimodal Lorenzian distribution (means 0.2,
0.5, ∆ = 0.015) with coupling strength K = 0.1, noise strength D = 0 and N = 100 oscillators.
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(c) Radii of the partial order parameters.

(d) Time-frequency plots of for the order
parameter z. Clearly showing two dis-
tinct frequencies present.

(e) Time-frequency plots of the partial
order parameter of z1 (top) and z2.
Showing one dominant frequency and a
much less dominant frequency in each of
the plots.

15d. This time-frequency plot shows two dominant frequencies, as expected. When increasing
the coupling further (not shown), all oscillators synchronise and we obtain similar plots to those
in Section 6.1. The difference is that we now have an intermediate state where we can observe
two partially synchronised groups.

When adding noise to the model in addition to taking a bimodal frequency distribution, we
obtained the plots in Figure 16. We simulated 1000 oscillators and applied the Monte Carlo
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Figure 16: Simulations of the Kuramoto model with bimodal discrete distribution (means 0.2,
5) with coupling strength K = 6.5 and noise strength D = 1. We simulated 1000 oscilla-
tors for 100 trajectories (16a,16b,16c,16d) and compared this to 1 trajectory for 100 oscillators
(16e,16f,16g,16h) as well as to 1 trajectory for 1000 oscillators (16i,16j,16k,16l).
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(a) Radial of the order parame-
ter over 100 trajectories for 1000
oscillators.
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(b) Order parameter over 100 tra-
jectories over 1000 oscillators.
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(c) Radii of the partial order pa-
rameters over 100 trajectories for
1000 oscillators.

(d) Time-frequency analysis of
the order parameter over 100 tra-
jectories for 1000 oscillators.
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over 1 trajectory for 100 oscilla-
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(f) Order parameter over 1 trajec-
tory for 100 oscillators.
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(g) Radii of the partial order pa-
rameters over 1 trajectory for 100
oscillators.

(h) Time-frequency analysis of
the order parameter over 1 tra-
jectory for 100 oscillators.
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(i) Radial of the order parameter
over 1 trajectory for 1000 oscilla-
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(j) Order parameter over 1 trajec-
tory for 1000 oscillators.
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(k) Radii of the partial order
parameters over 1 trajectory for
1000 oscillators.

(l) Time-frequency analysis of the
order parameter of 1 trajectory
for 1000 oscillators.

method for 100 trajectories. The time frequency analysis of the average order parameter over
these 100 trajectories is shown in Figure 16d. From the average of the radii of the order param-
eters (Figure 16a), we expect strong synchronisation for all times after approximately t = 10.
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Yet the dominant frequencies in the time frequency plot (Figure 16d) are not as strong (e.g.
bright yellow) as in some of the other time-frequency plots we have seen. Moreover, there are
two dominant frequencies present in the time-frequency plot though this is not implied by the
plot of the radius of the order parameter.

This is due to the average of the complete order parameter having a low amplitude. Even
though in each trajectory we have strong synchronisation in each group, they are not in phase
with the other trajectories. Hence when we average over trajectories, this average will have a
smaller radius than when we average just the radii over all trajectories. We would also expect
oscillations in the radius r as in Figure 15 when two groups are partially synchronised. These
oscillations are however also cancelled out by averaging over the trajectories.

Even though the Monte Carlo method does not achieve produce the desired for this particular
set of parameters, the method still works when the frequencies of the oscillators are sufficiently
large compared to the noise as in Figure 14. To achieve better accuracy for other parameters
we might consider simulating more oscillators rather than different trajectories. Consider for
example the difference between Figures 16l and 16h as we increase the number of oscillators
from 100 to 1000, the amount of noise that can be detected in the time-frequency plot as light
blue scattering is reduced significantly. At the same time the order parameter remains a useful
tool to detect synchronisation when we do not average it over multiple paths.

6.4 Chimera State
We continue by simulating the Kuramoto model with location dependent coupling that was dis-
cussed in Section 4. Recall that in this model (46,47) the oscillators are divided into two groups.
The intra group coupling is stronger than the inter group coupling. For the parameters A = 0.2
and β = 0.1 we found that the Chimera state is stable. These parameters correspond to the
phase plot in Figure 4. To find the Chimera state we have to start at a state close to it. From
Figure 4 we can make a guess for the phase difference and radius of the second group. The
radius of the first group should be 1, so we set the initial phases of the first group identically
to 0. The chimera state itself is located around (r cos(ψ), r sin(ψ)) = (0.7131,−0.1518). Thus

Figure 17: Radii of the partial order parameters of the ’Chimera’ model with uniform discrete
distribution (ω0 = 2) with coupling parameters A = 0.2 and β = 0.1. N = 200 oscillators were
simulated for T = 4000 and correspond to Figure 18.
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Figure 18: Simulations of the ’Chimera’ model with uniform discrete distribution (ω0 = 2) with
coupling parameters A = 0.2 and β = 0.1. N = 200 oscillators were simulated for T = 4000 and
correspond to Figure 17.
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in red (middle) and the time-frequency analysis
of z2 (bottom).

approximately at (r, ψ) = (0.7291,−0.2100).

Since this order parameter and phase difference are local, it is only an indication of where the
chimera state would be located in the original model. We choose the phases of the second group
from a normal distribution with mean 0.4 and standard deviation 0.6. The natural frequencies
are 2, the coupling parameter A = 0.2, the phase lag β = 0.1 and we simulate 200 oscillators.
From the plot of the radius for the second group for 0 ≤ t ≤ 4000 in Figure 17, we can see that
the behaviour differs depending on time. The path for 0 ≤ t ≤ 100 is shown in Figure 18a while
that of times 2000 ≤ t ≤ 2100 is shown in Figure 18b.

51



Figure 19: Distribution of phases corresponding to Figures 17 and 18. Each plot is the index of
the oscillator vs. the phase between −π and π.

(a) Phases between t = 84 and t = 91

(b) Phases between t = 2014 and t = 2022

For times 0 ≤ t ≤ 100 the plots indicate that the state is close to a chimera state. The or-
der parameter of this first group stays at radius r1 = 1, while the order parameter of the second
group has radius r2 between 0.5 and 0.9. For a stable chimera this radius would have been con-
stant rather than varied between 0.5 and 0.9. We have indeed not reached a stable chimera, since
after a while the oscillations start to increase and the trajectory seems to end up in a breathing
chimera. When we have a look at the phases themselves for different times, we can see more
clearly what the behaviour of the oscillators looks like.

In Figure 19a we can see 5 plots of the phases of the oscillators at different times between
t = 84 and t = 91. The indices of the oscillators are on the horizontal axis while their phases
between −π and π are on the vertical axis. The oscillators with indices 1 to 100 have the same
phase in all frames. While for oscillators 101 to 200 this is not the case. Their phases are spread
out over the whole interval on the first three frames. The last three frames show that there are
moments where the phases of oscillators 101 through 200 are much more concentrated though not
completely synchronised. At the last frame the order parameter of the second group r2 = 0.86
while at the first frame r2 = 0.68.

We now consider the phases for 5 different times between t = 2014 and t = 2022 in Figure
19b. The phases of oscillators 1 to 100 again have the same in all frames. As for oscillators
101 to 200, we see that the oscillators are split into two subgroups. Each of these subgroups is
synchronised in phase. The frequency at which they are synchronised changes in time. Thus
within group 2 we observe partial synchronisation even though all oscillators have the same nat-
ural frequency and all oscillators in group 2 are subjected to the same coupling.

We expected to find a chimera in which all oscillators in one of the groups would move in-
coherently, but we found a state in which two subgroups of oscillators move incoherently.
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7 Concluding remarks
The phenomenon of synchronisation was introduced along with a manner to study it. We followed
Kuramoto’s analysis and obtained a value for the critical coupling when considering the model
has infinitely many oscillators for different types of distributions by using the Ott-Antonsen
ansatz.

We then followed Mirello’s analysis of the Fokker-Planck equation that describes the oscilla-
tor density for the Kuramoto model with added white-noise. We considered a perturbation from
the incoherent solution and derived a formula for the critical coupling. We also describe the
types of stability depending on the noise strength.

We then looked at the effect of choosing a bimodal frequency distribution rather than a uni-
modal one as Kuramoto assumed in his analysis. For the Kuramoto model with noise we could
perform the analysis for a discrete bimodal frequency distribution. Following Bonilla [17], we
found a critical coupling depending on the noise strength and natural frequency of the oscillators.
For the original Kuramoto model we could also perform the bifurcation analysis for a Lorenzian
bimodal frequency distribution as done by Martens [18]. This way we can find conditions on the
parameters of the distribution for which the incoherent state is stable.

We then considered a model in which the coupling is location dependent, the oscillators are
identical, and there is a phase lag in the coupling. Following the approach of Abrams [6], we
rewrite the system into a planar system for which we analysed a few phase plots. As we bifurcate
from uniform coupling these plots indicate the presence of a stable chimera, then a breathing
chimera, and then a breathing chimera with a longer period. Where a chimera is a state in which
some oscillators are synchronised while others move incoherently.

For the above mentioned variations of the Kuramoto model, numerical analyses were performed
on the complete systems of oscillators in Matlab, where in the noiseless case we applied time-
frequency analysis on the order parameter.

In the case where we do not have global synchronisation but rather two or more clusters of
oscillators synchronising separately, this cannot be concluded from simply looking at the order
parameter of the complete population. When we take a bimodal frequency distribution or when
we look at the ’chimera model’, the order parameter can be analysed in time and frequency to
provide information about partial synchronisation. Since we have set up the model and chosen
the frequencies ourselves, we could compare the conclusions from the time-frequency plots with
the paths of the partial order parameters. We concluded that using this analysis it is possible to
detect global synchronisation as well as the synchronisation of separate clusters of oscillators.
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A Calculation of r2 for Chimera Model
We set ψ̇ = 0, where ψ̇ is as in Equation 63.

0 =r2 + 1
2r

[−rµ cos(−β) − ν cos(ψ + β)] + µ cos(−β) + rν cos(ψ − β)

⇒ 0 =r2 + 1
2r

[
−r1 +A

2
cos(β) − 1 −A

2
cos(ψ + β)

]
+ 1 +A

2
cos(β) + r

1 −A

2
cos(ψ − β)

⇒ 0 =A ·
[
−r2 + 1

2
cos(β) + r2 + 1

2r
cos(ψ + β) + cos(β) − r cos(ψ − β)

]
− r2 + 1

2
cos(β) − r2 + 1

2r
cos(ψ + β) + cos(β) + r cosψ − β

⇒ 0 = [sin(β + ψ) + r sin(β)] ·
[
−r2 + 1

2
cos(β) + r2 + 1

2r
cos(ψ + β) + cos(β) − r cos(ψ − β)

]
+ [sin(β + ψ) − r sin(β)] ·

[
−r2 + 1

2
cos(β) − r2 + 1

2r
cos(ψ + β) + cos(β) + r cos(ψ − β)

]
⇒ 0 = − (r2 + 1) sin(β + ψ) cos(β) − 2 sin(β + ψ) cos(β)

+ (r2 + 1) sin(β) cos(ψ + β) − 2r2 sin(β) cos(ψ − β)
⇒ 0 = − (r2 − 1) sin(β + ψ) cos(β) + (r2 + 1) sin(β) cos(ψ + β) − 2r2 sin(β) cos(ψ − β)
⇒ 0 = − r2[sin(β + ψ) cos(β) − sin(β) cos(ψ + β) + 2 sin(β) cos(ψ − β)]

+ sin(β + ψ) cos(β) + sin(β) cos(ψ + β)

⇒ r2 = sin(β + ψ) cos(β) + sin(β) cos(ψ + β)
sin(β + ψ) cos(β) − sin(β) cos(ψ + β) + 2 sin(β) cos(ψ − β)
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The different terms in this fraction can be rewritten to simplify the expression. We will look at
the numerator first.

sin(β + ψ) cos(β) + sin(β) cos(ψ + β)
= sin(β) cos(ψ) cos(β) + cos(β) sin(ψ) cos(β) + sin(β) cos(β) cos(ψ) − sin(β) sin(ψ) sin(ψ)

=1
2

sin(2β) cos(ψ) + cos2(β) sin(ψ) + 1
2

sin(2β) cos(ψ) − sin2(β) sin(ψ)

= sin(2β) cos(ψ) + cos(2β) sin(ψ)
= sin(2β + ψ)

Using similar trigonometric rules we can simplify the denominator as well.

sin(β + ψ) cos(β) − sin(β) cos(ψ + β) + 2 sin(β) cos(ψ − β)
= sin(β) sin(ψ) cos(β) + cos2(β) sin(ψ) − sin(β) cos(β) cos(ψ) + sin(β) sin(ψ)

+ 2 sin(β) cos(β) cos(ψ) + 2 sin2(β) sin(ψ)

=1
2

sin(2β) cos(ψ) + sin(ψ) − 1
2

sin(2β) cos(ψ)

+ sin(2β) cos(ψ) + 2 sin2(β) sin(ψ)
= sin(ψ) + sin(2β) cos(ψ) + 2 sin2(β) sin(ψ)
= sin(2β) cos(ψ) + (1 − 2 sin2(β)) sin(ψ) − 2 sin(ψ)
= sin(2β) cos(ψ) + cos(2β) sin(ψ) − 2 sin(ψ)
= sin(2β − ψ) − 2 sin(ψ)

Thus the expression for r2 reduces to

r2 = sin(2β + ψ)
sin(2β − ψ) − 2 sin(ψ)

B Matlab Code for Simulations

1 % Code to run the Kuramoto model with d i f f e r e n t opt ions :
2 % − d i f f e r e n t f requency d i s t r i b u t i o n s
3 % − l o c a t i o n dependent coup l ing ( ’ Chimera model ’ )
4 % − add a white−no i s e f o r c i n g term (Monte Carlo method )
5 %
6 % A model can be chosen by changing ’ modeltype ’ E i ther the
7 % parameter K ( model ’ k ’ ) or the parameters A and beta
8 % ( model ’ c ’ ) can then be changed
9 %

10 % The other parameters are the same f o r each model .
11 %
12 % Change f o r example the number o f o s c i l l a t o r s ’N’ or the
13 % runtime ’T ’ . The i n i t i a l phases are should be i n i t i a l i z e d
14 % as an N by 1 array ’X0 ’ . Bi− and unimodal d i s c r e t e and
15 % Lorenzian f requency d i s t r i b u t i o n s can be s p e c i f i e d
16 % by ’w0 ’ , ’ w0s ’ , ’ sd ’ and ’ d i s t r i b u t i o n ’
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17 %
18 % When adding a white−no i s e term (By changing ’D’ ) , determine
19 % the number o f t r a j e c t o r i e s by ’Na ’ and the number o f
20 % t r a j e c t o r i e s to add per time by ’Nadd ’ . When you want
21 % to add more t r a j e c t o r i e s without r e s e t t i n g the v a r i a b l e s
22 % change ’ r e s e t ’ to 0 . Change ’ r e s e t ’ back to 1 when wanting to
23 % run a new experiment .
24 %
25 % The t o t a l number o f t r a j e c t o r i e s produced (Monte Carlo ) and
26 % the va r i ance s o f the 3 d i f f e r e n t order parameters are
27 % disp layed . Seve ra l f i g u r e s are produced and saved under
28 % time s p e c i f i c names when the l i n e s under " save
29 % f i g u r e s " are commented out .
30 %
31 % I n i t i a l i z i n g ’ p l o t p a r t i a l ’ to 1 w i l l output ext ra
32 % p l o t s f o r r1 , r2 , z1 , z2 and t h e i r time−f requncy p l o t s .
33 %
34 % There are opt ions to save f i g u r e s and a movie o f the phases
35 % automat i ca l l y by s e t t i n g ’ save ’ and ’ movie ’ to 1 .
36

37 %%% −−−−− Parameters
38 D = 1 ; % no i s e s t r enght
39 T=20; % end time
40 N = 100 ; % number o f o s c i l l a t o r s ( even )
41

42 %%% −−−−− Type o f Model −−−−− %%%
43 modeltype = ’ k ’ ; % ’ c ’ : Chimera model , ’ k ’ : Kuramoto model
44 p l o t p a r t i a l = 0 ; % i f 1 , p l o t s f o r p a r t i a l order parameters
45 % & time−f r equency w i l l be made
46

47 %%% Or ig ina l Kuramoto ’k ’
48 K = 4 ;
49

50 %%% Chimera model ’ c ’
51 A = 0 . 2 ;
52 beta = 0 . 1 ;
53

54 %%% −−−−− Monte Carlo −−−−− %%%
55 Na = 10 ; % #t r a j e c t o r i e s
56 Nadd = 10 ; % number o f t r a j e c t o r i e s to add each loop
57 r e s e t = 10 ; % to add new t r a j e c t o r i e s : s e t to 0
58

59 %%% −−−−− Options to save f i g u r e s / movie −−−−− %%%%
60 movie = 0 ;
61 save = 1 ;
62

63 % Timestep
64 t0 =0; % i n i t i a l time
65 dt = 0 . 1 ; % time step
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66

67 %%% −−−−− I n i t i a l i s i n g o s c i l l a t o r phases −−−− %%%
68 %%% Completely uniform : (~ incohe rent s o l u t i o n )
69 X0 = 2∗ pi . ∗ rand (N, 1 ) ;
70

71 %%% Close to chimera :
72 % X0 ( 1 :N/2)=ze ro s (N/2 ,1) ;
73 % X0(N/2+1:N) =0.6∗ randn (N/2 ,1) +0.4 ;
74

75 X0 = mod(X0+pi , 2∗ pi )−pi ;
76

77 %X0=Xf ( : , s t ep s +1) ; % Continue from prev ious endpoint
78

79 %%% −−−−− Frequency d i s t r i b u t i o n −−−−− %%%
80 w0 = 2 ; % frequency mean
81 w0s = 5 ; % frequency mean 2
82 sd =0.015; % standard dev i a t i on
83 d i s t r i b u t i o n = ’ud ’ ; % ∗ types o f d i s t r i b u t i o n s :
84 % ’ bl ’ bimodal l o r e n t z ’ ul ’ unimodal l o r e n z
85 % ’bd ’ bimodal d i s c r e t e ’ud ’ unimodal

d i s c r e t e
86

87 i f r e s e t
88 [w, Ntotal , sqordersum , sqordersum1 , sqordersum2 , steps , ordersum ,

. . .
89 ordersum1 , ordersum2 , ordercsum]= i n i t i a l i z e (N, d i s t r i b u t i o n , . . .
90 w0 , w0s , sd ,T, t0 , dt ) ;
91 end
92

93 t i c
94 [ Xf , Ntotal , Var , Var1 , Var2 , sqordersum , sqordersum1 , sqordersum2 , ordersum

, . . .
95 ordersum1 , ordersum2 , t ra j 1o rde r1 , t r a j 1o rde r2 , ordercsum ] . . .
96 = RegularMonteCarlo ( ordercsum , modeltype ,A, beta , Nadd , Na , dt ,N,w , . . .
97 D,K, X0 , t0 ,T, Ntotal , ordersum , ordersum1 , ordersum2 , sqordersum

, . . .
98 sqordersum1 , sqordersum2 ) ;
99 t =0: dt :T; % time d i s c r e t i z s a t i o n

100 toc
101

102 di sp ( Ntota l ) % t o t a l number o f t r a j e c t o r i e s s imulated
103 di sp ( [ Var Var1 Var2 ] )
104

105 f i g u r e s = [ ] ; % to s t o r e f i g u r e handles
106 f i g u r e s = plotswave ( ordercsum , p l o t p a r t i a l , f i g u r e s , ordersum , ordersum1

, . . .
107 ordersum2 , t , Ntotal , t r a j 1o rde r1 , t r a j 1 o r d e r 2 ) ;
108
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109 % % %%% −−−−− Produce a s c a t t e r p l o t o f the natura l f r e q u e n c i e s −−−−−
%%%

110 f i g u r e s (8 )=f i g u r e ; s c a t t e r ( 1 : l ength (w) , s o r t (w) )
111

112 % %%% −−−−− Produce a s c a t t e r p l o t o f the i n i t i a l phases −−−−− %%%
113 f i g u r e s (1 ) = f i g u r e ; s c a t t e r ( 1 :N, ( X0) , ’ MarkerFaceColor ’ , ’ b ’ )
114 y l a b e l ( ’ \ theta_j ’ ) ; x l a b e l ( ’ j ’ ) ; yl im ([ − pi p i ] )
115

116 %%% −−−−− Produce movie o f the phases o f the o s c i l l a t o r s −−−−− %%%
117 i f movie
118 ct=f i x ( c l o ck ) ;
119 h=f i g u r e ;
120 v=VideoWriter ( [ num2str ( ct (3 ) ) , ’ 0 ’ , num2str ( c t (2 ) ) , ’ t ’ , . . .
121 num2str ( c t (4 ) ) , num2str ( ct (5 ) ) , ’ r . av i ’ ] ) ;
122 open ( v )
123 [ ~ ,~ , s t ]= s i z e ( Xf ) ;
124 f o r i = 1 : s t
125 s c a t t e r ( 1 :N,mod( Xf ( : , i )+pi , 2∗ pi )−pi , ’ MarkerFaceColor ’ , ’ b ’ )
126 t i t l e ( [ ’ r_1=’ , num2str ( abs ( ordersum1 ( i ) ) , 2 ) , ’ r_2=’ , . . .
127 num2str ( abs ( ordersum2 ( i ) ) , 2 ) , ’ t=’ , num2str ( t ( i ) ) , ] ) ;
128 y l a b e l ( ’ \ theta_j ’ )
129 x l a b e l ( ’ j ’ )
130 ylim ([ − pi p i ] )
131

132 frame = getframe (h) ;
133 writeVideo (v , frame ) ;
134 end
135 c l o s e ( v ) ;
136 end
137

138 %%% −−−−− Saving f i g u r e s −−−−− %%%
139 i f save
140 ct=f i x ( c l o ck ) ;
141 %%% Global order parameters :
142 saveas ( f i g u r e s (2 ) , [ num2str ( ct (3 ) ) , ’ 0 ’ , num2str ( c t (2 ) ) , ’ t ’ , . . .
143 num2str ( c t (4 ) ) , num2str ( ct (5 ) ) , ’ r ’ ] , ’ epsc ’ ) % abs order
144 saveas ( f i g u r e s (3 ) , [ num2str ( ct (3 ) ) , ’ 0 ’ , num2str ( c t (2 ) ) , ’ t ’ , . . .
145 num2str ( c t (4 ) ) , num2str ( ct (5 ) ) , ’ r c ’ ] , ’ epsc ’ ) % order
146 saveas ( f i g u r e s (5 ) , [ num2str ( ct (3 ) ) , ’ 0 ’ , num2str ( c t (2 ) ) , ’ t ’ , . . .
147 num2str ( c t (4 ) ) , num2str ( ct (5 ) ) , ’ rcw ’ ] , ’ epsc ’ ) % wave order
148 %%% I n i t i a l f r eq , phases
149 saveas ( f i g u r e s (1 ) , [ num2str ( ct (3 ) ) , ’ 0 ’ , num2str ( c t (2 ) ) , ’ t ’ , . . .
150 num2str ( c t (4 ) ) , num2str ( ct (5 ) ) , ’X0 ’ ] , ’ epsc ’ ) %i n i t i a l phases
151 saveas ( f i g u r e s (8 ) , [ num2str ( ct (3 ) ) , ’ 0 ’ , num2str ( c t (2 ) ) , ’ t ’ , . . .
152 num2str ( c t (4 ) ) , num2str ( ct (5 ) ) , ’w ’ ] , ’ epsc ’ ) % f r e q d i s t r .
153 %%% P a r t i a l order parameters :
154 i f p l o t p a r t i a l
155 saveas ( f i g u r e s (4 ) , [ num2str ( ct (3 ) ) , ’ 0 ’ , num2str ( c t (2 ) ) , ’ t ’ , . . .
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156 num2str ( c t (4 ) ) , num2str ( ct (5 ) ) , ’ r12 ’ ] , ’ epsc ’ ) % p a r t i a l abs
order

157 saveas ( f i g u r e s (6 ) , [ num2str ( ct (3 ) ) , ’ 0 ’ , num2str ( c t (2 ) ) , ’ t ’ , . . .
158 num2str ( c t (4 ) ) , num2str ( ct (5 ) ) , ’ rc1w ’ ] , ’ epsc ’ ) % wave part .

order 1
159 saveas ( f i g u r e s (7 ) , [ num2str ( ct (3 ) ) , ’ 0 ’ , num2str ( c t (2 ) ) , ’ t ’ , . . .
160 num2str ( c t (4 ) ) , num2str ( ct (5 ) ) , ’ rc2w ’ ] , ’ epsc ’ ) % wave part .

order 2
161 saveas ( f i g u r e s (9 ) , [ num2str ( ct (3 ) ) , ’ 0 ’ , num2str ( c t (2 ) ) , ’ t ’ , . . .
162 num2str ( c t (4 ) ) , num2str ( ct (5 ) ) , ’ rc12 ’ ] , ’ epsc ’ ) % p a r t i a l order
163 end
164 end
165

166 f unc t i on [w, Ntotal , sqordersum , sqordersum1 , sqordersum2 , steps , . . .
167 ordersum , ordersum1 , ordersum2 , ordercsum ] = . . .
168 i n i t i a l i z e (N, d i s t r i b u t i o n , w0 , w0s , sd ,T, t0 , dt )
169

170 w = D i s t r i b u t i o n ( d i s t r i b u t i o n , N, w0 , w0s , sd ) ;
171 Ntotal = 0 ; % t o t a l number o f t r a j e c t o r i e s s imulated so

f a r
172 s t ep s = (T−t0 ) /dt ; % number o f t imes teps
173

174 %%% Sums o f ( r a d i a l o f ) order parameter ( squared ) f o r MC method
175 ordersum =0;
176 ordersum1 =0;
177 ordersum2 =0;
178 sqordersum = 0 ;
179 sqordersum1 = 0 ;
180 sqordersum2 = 0 ;
181 ordercsum = 0 ;
182 end
183

184 f unc t i on [w] = D i s t r i b u t i o n ( d i s t r i b u t i o n , N, w0 , w0s , sd )
185 i f d i s t r i b u t i o n == ’ b l ’
186 %%% bimodal l o r e n z i a n
187 u n i f = rand (N/2 ,1) ;
188 w1 = w0 + sd∗ tan ( p i ∗( uni f −0.5) ) ;
189 w2 = w0s + sd∗ tan ( p i ∗( uni f −0.5) ) ;
190 w = [ w1 ; w2 ] ;
191 e l s e i f d i s t r i b u t i o n == ’ u l ’
192 %%% unimodal l o r e n z i a n
193 u n i f = rand (N, 1 ) ;
194 w = w0 + sd∗ tan ( p i ∗( uni f −0.5) ) ;
195 e l s e i f d i s t r i b u t i o n == ’bd ’
196 %%% bimodal d i s c r e t e
197 w1 = w0∗ ones (N/2 ,1) ;
198 w2 = w0s∗ ones (N/2 ,1) ;
199 w = [ w1 ; w2 ] ;
200 e l s e i f d i s t r i b u t i o n == ’ud ’
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201 %%% unimodal d i s c r e t e
202 w = w0∗ ones (N, 1 ) ;
203 e l s e
204 di sp ( ’ choose d i s t r i b u t i o n bl , ul , bd or ud ’ )
205 end
206 end
207

208 f unc t i on [ g1 ] = Kuramoto (N,w,K, X)
209 [ ~ , s2 ]= s i z e (X) ;
210 g1=ze ro s ( s i z e (X) ) ; % i n i t i a l i s e
211 f o r z=1: s2 % runs over t r a j e c t o r i e s
212 [ theta_j , theta_i ] = meshgrid (X( : , z ) ) ;
213 g1 ( : , z ) = w + K/N∗sum( s i n ( theta_j−theta_i ) , 2 ) ;
214 end
215 end
216

217 f unc t i on [ g1 ] = KuramotoChimera (N,w,A, beta ,X) % as in Abrams et al ,
2008

218 M=N/2 ; % number o f o s c i l l a t o r s per group
219 [ ~ , s2 ]= s i z e (X) ;
220 g1 = ze ro s ( s i z e (X) ) ; % i n i t i a l i s e
221 f o r z=1: s2 % runs over t r a j e c t o r i e s
222 [ theta_j , theta_i ] = meshgrid (X( : , z ) ) ;
223 g1 ( 1 :M, z ) = w( 1 :M) − (1+A) /(2∗M) ∗ . . .
224 sum( cos ( theta_i ( 1 :M, 1 :M)−theta_j ( 1 :M, 1 :M)−beta ) ,2 ) . . .
225 −(1−A) /(2∗M) ∗ . . .
226 sum( cos ( theta_i ( 1 :M, 1 :M)−theta_j (M+1:N,M+1:N)−beta ) ,2 ) ;
227 g1 (M+1:N, z ) = w(M+1:N) − (1+A) /(2∗M) ∗ . . .
228 sum( cos ( theta_i (M+1:N,M+1:N)−theta_j (M+1:N,M+1:N)−beta )

,2 ) . . .
229 −(1−A) /(2∗M) ∗ . . .
230 sum( cos ( theta_i (M+1:N,M+1:N)−theta_j ( 1 :M, 1 :M)−beta ) ,2 ) ;
231 end
232 end
233

234 f unc t i on [ Xf , Ntotal , Var , Var1 , Var2 , sqordersum , sqordersum1 , . . .
235 sqordersum2 , ordersum , ordersum1 , ordersum2 , . . .
236 t ra j 1o rde r1 , t r a j 1o rde r2 , ordercsum ] = RegularMonteCarlo ( ordercsum

, . . .
237 modeltype ,A, beta , Nadd , Na , dt ,N,w,D,K, X0 , t0 ,T, Ntotal , . . .
238 ordersum , ordersum1 , ordersum2 , sqordersum , sqordersum1 , sqordersum2

)
239

240 s t ep s = (T−t0 ) /dt ; % number o f t imes teps
241

242 %%% −−−−− Monte−Carlo −−−−− %%%
243 whi le Ntota l < Na % && ( Yvar>e p s i l o n | | Zvar>e p s i l o n )
244 % i n i t i a l p o s i t i o n s o f a l l o s c i l l a t o r s
245 Xf=ones (N, Nadd , s t ep s +1) . ∗X0 ;
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246 f o r j =1: s t ep s
247 % Brownian motion
248 dW = sqr t ( dt ) ∗ randn (N, Nadd) ;
249 i f modeltype == ’ k ’
250 g1 = Kuramoto (N,w,K, Xf ( : , : , j ) ) ;
251 e l s e i f modeltype == ’ c ’
252 g1 = KuramotoChimera (N,w,A, beta , Xf ( : , : , j ) ) ;
253 e l s e
254 e r r o r ( ’ Error . s p e c i f y the type o f model as c or k ’ )
255 end
256 % Euler−Maruyana
257 Xf ( : , : , j +1) = Xf ( : , : , j ) + g1∗dt + sq r t (2∗D) . ∗dW;
258 end
259

260 %%% −−−−− Order parameter −−−−− %%%
261 e t t=exp (1 j ∗Xf ) ;
262

263 %%% −−−−− P a r t i a l order parameters −−−−− %%%
264 e t t1 = exp (1 j ∗Xf ( 1 :N/ 2 , : , : ) ) ;
265 e t t2 = exp (1 j ∗Xf (N/2+1:N, : , : ) ) ;
266

267 %%%% −−−−− p l o t t i n g d i f f e r e n t t r a j e c t o r i e s −−−− %%%
268 e t t p l o t = 1/N∗permute (sum( ett , 1 ) , [ 3 1 2 ] ) ;
269 f i g u r e
270 f o r kk=1:Nadd
271 p lo t3 ( 0 : dt :T, r e a l ( e t t p l o t ( : , kk ) ) , imag ( e t t p l o t ( : , kk ) ) ) ;
272 hold on ;
273 ylim ([ −1 1 ] )
274 z l im ([ −1 1 ] )
275 end
276 f i g u r e
277 f o r kk=1:Nadd
278 p lo t ( 0 : dt :T, abs ( e t t p l o t ( : , kk ) ) ) ;
279 hold on ;
280 ylim ( [ 0 1 ] )
281 end
282

283 %%% −−−− Order parameter f o r 1 s t t r a j e c t o r y −−−−− %%%
284 t r a j 1 o r d e r 1 = 1/(N/2) ∗sum( e t t1 ( : , 1 , : ) , 1 ) ;
285 t r a j 1 o r d e r 2 = 1/(N/2) ∗sum( e t t2 ( : , 1 , : ) , 1 ) ;
286

287 ordercsum = ordercsum + sum((1/N∗(sum( e t t ( : , : , : ) , 1 ) ) ) , 2 ) ;
288

289 %%% −−−− Calcu la te sums requ i r ed f o r var i ance and mean −−−− %%%
290 ordersum= ordersum + sum( abs (1/N∗(sum( e t t ( : , : , : ) , 1 ) ) ) , 2 ) ;
291 sqordersum= sqordersum + sum( abs (1/N∗(sum( e t t ( : , : , s t ep s +1) ,1 ) ) )

. ^2 , 2 ) ;
292 ordersum1 = ordersum1 + sum( abs (1/(N/2) ∗(sum( e t t1 ( : , : , : ) , 1 ) ) ) , 2 ) ;
293 ordersum2 = ordersum2 + . . .
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294 sum( abs (1/(N/2) ∗(sum( e t t2 ( : , : , : ) , 1 ) ) ) , 2 ) ;
295 sqordersum1= sqordersum1 + . . .
296 sum( abs ( ( 1/ (N/2) ∗(sum( e t t1 ( : , : , s t ep s +1) ,1 ) ) ) ) . ^2 , 2 ) ;
297 sqordersum2= sqordersum2 + . . .
298 sum( abs ( ( 1/ (N/2) ∗(sum( e t t2 ( : , : , s t ep s +1) ,1 ) ) ) ) . ^2 , 2 ) ;
299

300 Ntotal = Ntotal + Nadd ; % update number o f paths s imulated
301 end
302

303 %%% −−−− Variances f o r abso lu t e ( p a r t i a l ) order parameters −−−−
%%%

304 Var = abs (sum( sqordersum ) / Ntota l − . . .
305 (sum( ordersum (1 ,1 , s t ep s +1) ) / Ntota l ) . ^2 ) ;
306 Var1 = abs (sum( sqordersum1 ) / Ntota l − . . .
307 (sum( ordersum1 (1 ,1 , s t ep s +1) ) / Ntota l ) . ^2 ) ;
308 Var2 = abs (sum( sqordersum2 ) / Ntota l − . . .
309 (sum( ordersum2 (1 ,1 , s t ep s +1) ) / Ntota l ) . ^2 ) ;
310

311 Xf = Xf ( : , 1 , : ) ;
312 end
313

314 f unc t i on [ f i g u r e s ]= plotswave ( ordercsum , p l o t p a r t i a l , f i g u r e s , ordersum
, . . .

315 ordersum1 , ordersum2 , t , Ntotal , t r a j 1o rde r1 , t r a j 1 o r d e r 2 )
316

317 %%% −−−− Complex order parameters f o r 1 s t t r a j e c t o r y −−−− %%%
318 ordercomplex = permute ( ordercsum , [ 3 2 1 ] ) / Ntota l ;
319 ordercomplex1 = permute ( t ra j 1o rde r1 , [ 3 2 1 ] ) ;
320 ordercomplex2 = permute ( t ra j 1o rde r2 , [ 3 2 1 ] ) ;
321

322 %%% −−−− Mean rad iu s order parameter over a l l t r a j e c t o r i e s −−−−
%%%

323 orderabs = permute ( ordersum , [ 3 2 1 ] ) / Ntota l ;
324 orderabs1 = permute ( ordersum1 , [ 3 2 1 ] ) / Ntota l ;
325 orderabs2 = permute ( ordersum2 , [ 3 2 1 ] ) / Ntota l ;
326

327 %%% −−−−− S p e c i f y i n g f i g u r e s i z e s and p o s i t i o n s −−−−− %%%
328 bdwidth = 5 ; topbdwidth =30;
329 s e t (0 , ’ Units ’ , ’ p i x e l s ’ ) ;
330 s c n s i z e= get (0 , ’ Sc r eenS i z e ’ ) ;
331 pos1 = [ bdwidth , 2/3∗ s c n s i z e (4 ) + bdwidth , . . .
332 s c n s i z e (3 ) /2 − 2∗bdwidth , s c n s i z e (4 ) /3−( topbdwidth + bdwidth )

] ;
333 pos2 = [ pos1 (1 ) + s c n s i z e (3 ) /2 , pos1 (2 ) , pos1 (3 ) , pos1 (4 ) ] ;
334 pos3 = [ pos1 (1 ) , 0 , pos1 (3 ) −300, pos1 (4 ) +250] ;
335 pos4 = [ pos3 (1 )+ s c n s i z e (3 ) /3 , pos3 (2 ) , pos3 (3 ) , pos3 (4 ) ] ;
336 pos5 = [ pos3 (1 )+ 2∗ s c n s i z e (3 ) /3 , pos3 (2 ) , pos3 (3 ) , pos3 (4 ) ] ;
337

338 %%% −−−−− Simple P lot s −−−−− %%%
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339 % rad ius o f order parameter
340 f i g u r e s (2 ) = f i g u r e ( ’ Po s i t i on ’ , pos1 ) ;
341 p lo t ( t , orderabs )
342 x l a b e l ( ’ t ’ )
343 y l a b e l ( ’ r ’ )
344 ylim ( [ 0 1 ] )
345

346 % order parameter
347 f i g u r e s (3 ) = f i g u r e ;
348 p lo t3 ( t , r e a l ( ordercomplex ) , imag ( ordercomplex ) )
349 x l a b e l ( ’ t ’ )
350 y l a b e l ( ’ r e a l ( re ^{ i \ p s i }) ’ )
351 z l a b e l ( ’ imag ( re ^{ i \ p s i }) ’ )
352 ylim ([ −1 1 ] )
353 z l im ([ −1 1 ] )
354

355 %%% −−−− Wavelet Toolbox Time−Frequency a n a l y s i s −−−− %%%
356 f i g u r e s (5 ) = f i g u r e ( ’ Po s i t i on ’ , pos3 ) ;
357 cwt ( ordercomplex , ’ amor ’ ) % ’amor ’ i s the a n a l y t i c morlet

wavelet .
358

359 i f p l o t p a r t i a l
360 % p a r t i a l order parameters
361 f i g u r e s (9 ) = f i g u r e ;
362 p lo t3 ( t , r e a l ( ordercomplex1 ) , imag ( ordercomplex1 ) )
363 hold on ;
364 p lo t3 ( t , r e a l ( ordercomplex2 ) , imag ( ordercomplex2 ) )
365 x l a b e l ( ’ t ’ )
366 y l a b e l ( ’ r e a l ( re ^{ i \ p s i }) ’ )
367 z l a b e l ( ’ imag ( re ^{ i \ p s i }) ’ )
368 ylim ([ −1 1 ] )
369 z l im ([ −1 1 ] )
370

371 % rad ius o f p a r t i a l order parameters
372 f i g u r e s (4 ) = f i g u r e ( ’ Po s i t i on ’ , pos2 ) ;
373 p lo t ( subplot ( 2 , 1 , 1 ) , t , orderabs1 )
374 x l a b e l ( ’ t ’ )
375 y l a b e l ( ’ r_1 ’ )
376 ylim ( [ 0 1 ] )
377 hold on ;
378 p lo t ( subplot ( 2 , 1 , 2 ) , t , orderabs2 )
379 x l a b e l ( ’ t ’ )
380 y l a b e l ( ’ r_2 ’ )
381 ylim ( [ 0 1 ] )
382

383 % wavelet too lbox time−f r equency a n a l y s i s f o r p a r t i a l order
384 % parameters % f o r now only f o r 1 t r a j e c t o r y
385 f i g u r e s (6 ) = f i g u r e ( ’ Po s i t i on ’ , pos4 ) ;
386 cwt ( ordercomplex1 , ’ amor ’ )
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387 f i g u r e s (7 ) = f i g u r e ( ’ Po s i t i on ’ , pos5 ) ;
388 cwt ( ordercomplex2 , ’ amor ’ )
389 end
390 end

C Matlab Code for Phase Plots

1 % Code to make phase p l o t s f o r the Kuramoto model with
2 % l o c a t i o n dependent coup l ing as de s c r ibed by Abrams ,
3 % Mire l l o , Strogatz , Wiley (2008)
4

5 b=0.1; % phase l ag parameter
6 A=0.2; % Coupling parameter
7 mu = (1+A) /2 ; % inte rg roup coup l ing
8 nu = (1−A) /2 ; % int ragroup coup l ing
9 alpha=pi/2−b ; % phase l ag

10

11 % The Kuramoto model with l o c a t i o n dependen coup l ing :
12 f = @( t ,Y) [(1 −Y(1) ^2) /2∗(Y(1) ∗mu∗ cos (−alpha ) + nu∗ cos (Y(2)+alpha ) )
13 (Y(1) ^2+1) /(2∗Y(1) ) ∗(Y(1) ∗mu∗ s i n (−alpha )−nu∗ s i n (Y(2)+alpha ) ) − . . .
14 mu∗ s i n (−alpha )−Y(1) ∗nu∗ s i n (Y(2)−alpha ) ] ;
15

16 % I n i t i a l i s i n g f i g u r e , ax i s , t i t l e , c o l o u r s
17 f i g u r e ;
18 x l a b e l ( ’ r cos \ p s i ’ , ’ FontSize ’ ,17) ;
19 y l a b e l ( ’ r s i n \ p s i ’ , ’ FontSize ’ ,17) ;
20 t i t l e ( [ ’A=’ , num2str (A) , ’ \ beta=’ , num2str (b) ] ) ;
21 hold on
22 co l our= [ 1 0 0 ; 1 0 .5 0 ; 0 . 6 0 0 . 6 ; 0 . 2 0 . 6 1 ] ; % red orange purple

blue
23 i =1; % to vary among the 4 c o l o u r s
24

25 % Grid in terms o f r and p s i
26 rvec = [ 0 . 0 0 1 0 . 1 : 0 . 1 : 1 ] ;
27 ps i v e c = [ p i 0 : 0 . 2 : p i 0: −0.2: − pi ] ;
28

29 % s t o r e s t a r t p o i n t s and endpoints to p l o t on top o f t r a j e c t o r i e s
30 s t a r t p o i n t s . y1 = ze ro s ( l ength ( rvec ) , l ength ( p s i v e c ) ) ;
31 s t a r t p o i n t s . y2 = ze ro s ( l ength ( rvec ) , l ength ( p s i v e c ) ) ;
32 endpoints . y1 = ze ro s ( l ength ( rvec ) , l ength ( p s i v e c ) ) ;
33 endpoints . y2 = ze ro s ( l ength ( rvec ) , l ength ( p s i v e c ) ) ;
34

35 % running over gr id , c a l c u l a t i n g and p l o t t i n g t r a j e c t o r i e s
36 f o r r =1: l ength ( rvec )
37 f o r p s i =1: l ength ( p s i v e c )
38 [ ts , ys ] = ode45 ( f , [ 0 , 3 0 0 0 ] , [ rvec ( r ) ; p s i v e c ( p s i ) ] ) ;
39 p lo t ( ys ( : , 1 ) . ∗ cos ( ys ( : , 2 ) ) , ys ( : , 1 ) . ∗ s i n ( ys ( : , 2 ) ) , ’ c o l o r ’ , . . .
40 co l our ( i , 1 : 3 ) ) ; i=i +1; i f i >4 i =1; end
41 s t a r t p o i n t s . y1 ( r , p s i ) = ys (1 , 1 ) . ∗ cos ( ys (1 , 2 ) ) ;
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42 s t a r t p o i n t s . y2 ( r , p s i ) = ys (1 , 1 ) . ∗ s i n ( ys (1 , 2 ) ) ;
43 endpoints . y1 ( r , p s i ) = ys ( l ength ( ys ) , 1 ) . ∗ cos ( ys ( l ength ( ys ) ,2 ) )

;
44 endpoints . y2 ( r , p s i ) = ys ( l ength ( ys ) , 1 ) . ∗ s i n ( ys ( l ength ( ys ) ,2 ) )

;
45 end
46 end
47

48 % running over gr id , p l o t t i n g s ta r t − and endpoints
49 f o r r =1: l ength ( rvec )
50 f o r p s i =1: l ength ( p s i v e c )
51 p lo t ( s t a r t p o i n t s . y1 ( r , p s i ) , . . .
52 s t a r t p o i n t s . y2 ( r , p s i ) , ’ bo ’ ) % s t a r t i n g po int
53 p lo t ( endpoints . y1 ( r , p s i ) , . . .
54 endpoints . y2 ( r , p s i ) , ’ bd ’ , ’ MarkerFaceColor ’ , ’ b ’ ) % ending

po int
55 end
56 end
57

58 hold o f f
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