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Abstract

The phenomenon of synchronisation is studied by means of the Kuramoto model. This
model describes a large population of coupled oscillators with natural frequencies taken from
a narrow distribution. It is assumed that the coupling between the oscillators is mean-field
and purely sinusoidal. We follow Kuramoto’s analysis to obtain a formula for the critical
coupling. Then the properties of the Kuramoto model are studied with the aid of Poincaré
maps. We then conclude with a time-frequency analysis of the order parameter. With the
aid of this time-frequency analysis we were able to detect partial synchronisation.
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1 Introduction

One of the interesting phenomena of nature is that of collective synchronisation. The mathe-
matics behind this will be discussed here. We will consider a large collection of oscillators that
are coupled to each other. Thus the oscillators interact.

We introduce the concept of synchronisation and the model that Kuramoto used to describe
it. We are interested in the behaviour of the oscillators for different distributions of their natural
frequencies. How strong should the oscillators be coupled to each other in order for them to syn-
chronise? We will introduce a measure of synchronisation. This measure will be analysed using
time-frequency analysis. The insights gained from this particular analysis will be discussed. We
will see that we cannot only detect global synchronisation but also partial synchronisation using
this method. Thus even though not all oscillators are part of the synchronised pack, we can
detect those oscillators that have synchronised. Even the cases where multiple packs synchronise
separately to different frequencies can be detected by time-frequency analysis.

We will start with an introduction to synchronisation in Section 2. We will make some
assumptions on the oscillators and their interaction in order to make the problem tractable.
These assumptions will be discussed in Sections 3 and 4. After having introduced the Kuramoto
model, we will introduce the order parameter in Section 5. In Section 6 we follow the analysis
done by Yoshiki Kuramoto. We then proceed with an analysis of the model by introducing a
Hamiltonian system in which the Kuramoto model is contained. The Hamiltonian system is then
studied with the aid of Poincaré maps in Section 7. Finally we introduce time-frequency analysis
in Section 8 in order to study the Kuramoto model for a larger number of oscillators.

2 Synchronisation

As mentioned before, we will consider a large collection of coupled oscillators and study the
behaviour of the system. Such a large collection of oscillators might spontaneously lock into a
common frequency. In other words, without force put upon them, the oscillators will take on the
same frequency despite having different natural frequencies.

Well known examples of collective synchronisation in biology are those of fireflies flashing and
crickets chirping in sync. Collective synchronisation also appears within organism. For example
in insulin-secreting cells in the pancreas and in pacemaker cells in the heart. Furthermore there
are cells in the brain and spinal cord that synchronise in order to control the rhythm of breathing
and running. [1]

The interaction between fireflies, crickets or neurons happens through pulses. The insects
or cells respond to sudden impulses of their neighbours. This behaviour is difficult to model
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mathematically. We would like to model continuous behaviour rather than the discontinuous
pulses. Thus we consider only the rhythm of an individual or neuron. We might think of this as
oscillators with a certain natural frequency. When their periods (or frequencies) coincide, they
are said to be in sync.

We will now formally define what we mean by synchronisation. Given a system ofN oscillators
with phases φi for i = 1, . . . , N . These oscillators are said to synchronise if φ̇i− φ̇j → 0 as t→∞
for every i, j = 1, . . . , N . Thus when they tend to travel with the same speed as t→∞. They are
said to be exactly synchronised when moreover φi − φj → 0 as t→∞ for every i, j = 1, . . . , N .
Thus next to having the same speed, the oscillators will follow the exact same path as t→∞.

3 Winfree’s research on synchronisation

Winfree started his research on large populations of limit-cycle oscillators in 1966. [1] He used
computer simulations, mathematical analysis and experiments with electrically coupled neontube
oscillators. In his mathematical analysis Winfree considered a large population of interacting
limit-cycle oscillators and applied some simplifications in order to analyse the behaviour. Firstly
he assumed the coupling between the oscillators was weak and secondly he assumed that the
oscillators were nearly identical.

A third simplification made by Winfree was that the natural frequencies are taken from
some narrow probability function. Furthermore the oscillators are assumed to be coupled to the
collective rhythm of the population. That is, rather than being coupled to each of the other
oscillators it is coupled to some average of the frequencies.

4 Introducing the Kuramoto model

Inspired by the works of Winfree, Kuramoto decided to study the phenomenon as well. [3] He
expanded on the ideas of Winfree and derived a model that describes the long term dynamics of
any system of nearly identical weakly coupled limit-cycle oscillators. In spite of the assumptions
made in order to simplify the model, the oscillators described by the Kuramoto model will still
synchronise under certain conditions. Therefore the model can and has been used to study col-
lective synchronisation.

The Kuramoto model describes a system of N oscillators that are coupled by means of their
phase differences. A general form for the rate of change of the i’th oscillator is given by

φ̇i = ωi +
N∑
j=1

Γi,j(φj − φi), (1)

4



for i = 1, . . . , N . Here ωi is the intrinsic frequency of the respective oscillator and Γi,j denotes
the interaction function. Kuramoto considered purely sinusoidal coupling between all oscillators.
Thus he obtained

φ̇i = ωi +
N∑
j=1

Ki,j sin(φj − φi), i = 1, . . . , N, (2)

where Kj,l denote the coupling constants. For small coupling constants the model approx-
imately describes a system of independent oscillators moving at frequencies ωj . Because the
model is closely related to this solvable system, it is a useful tool in our study. As we will find
out, the coupling constants should be sufficiently great in order for synchronisation to occur.

Different types of coupling may be considered. Such as next-neighbour coupling, mean-field
coupling and long-range coupling [6]. We will consider mean-field coupling, each oscillator is
coupled to some average frequency. The coupling constants Ki,j are identically equal to K

N for
all i, j = 1, . . . , N . The model then becomes

φ̇i = ωi + K

N

N∑
j=1

sin(φj − φi), i = 1, . . . , N. (3)

Each oscillator is coupled to the collective rhythm, as was also assumed by Winfree. This is
not evident from the equations for the Kuramoto model as introduced above (2). To get a better
idea of the model and the dependence between the oscillators we therefore introduce the order
parameter.

5 Order parameter

Let φi describe the angle of a point running around the unit circle. The model then describes
a collection of N points running around this unit circle. We can define a collective rhythm for
this collection of points as

reiψ = 1
N

N∑
j=1

eiφj . (4)

Here ψ is the average phase and r measures the phase coherence of the oscillators. The order
parameter will have a value located in the unit circle. If the points are spread around the circle,
r will be close to zero. If the points are located closer to each other, r will be closer to 1. So
values of reiψ close to zero indicate that absence of synchronisation whereas values close to the
unit circle indicate (partial) synchronisation.

We can write equations (3) in terms of the order parameter. First we rewrite (4) by multi-
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Figure 1: Several frames capturing the paths of 10 oscillators (black) and the corresponding order
parameter (blue) are shown. After the 5th frame the oscillators remain together. The natural
frequencies ω1, . . . , ω10 are taken from a normal distribution with mean µ = 0.3 and standard
deviation σ = 0.05. The coupling is K = 0.04. Animations for different coupling strengths are
available [9]

plying both sides by e−iφi to obtain

rei(ψ−φi) = 1
N

N∑
j=1

ei(φj−φi).

We then equate imaginary parts:

r sin(ψ − φi) = 1
N

N∑
j=1

sin(φj − φi). (5)

By this result equation (3) can be rewritten to

φ̇i = ωi +Kr sin(ψ − φi), i = 1, . . . , N. (6)

Modifying the model using this order parameter leads us to the conclusion that each oscilla-
tor is coupled to the others only through the mean-field quantities r and ψ. As the population
becomes more coherent, r increases and therefore the effective coupling term Kr increases. This
leads to more and more oscillators becoming part of the synchronised group of oscillators. This
behaviour was first discovered by Winfree and specifically stands out in the Kuramoto model.
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Kuramoto used this order parameter to study the behaviour of the model. We will have a
look at his analysis in the next section. In Section 8 we will analyse the order parameter in a
different manner. Namely by using time-frequency analysis.

6 Kuramoto’s analysis

In this section, we will follow Kuramoto’s analysis of the model as described by Strogatz [3]. We
have rewritten (2) in terms of the mean-field quantities in the following way:

φ̇i = ωi +Kr sin(ψ − φi), for i = 1, . . . , N. (7)

We will now analyse the model following Kuramoto’s procedures. In his analysis, Kuramoto
sought for particular solutions, namely those in which r(t) is constant and ψ(t) rotates uniformly
at some frequency Ω. By then moving into a rotating frame with this frequency Ω we can set
ψ = 0 to obtain

φ̇i = ωi −Kr sin(φi), for i = 1, . . . , N. (8)

This equation has two different types of solutions. One corresponding to the oscillators that are
in the synchronised pack, the other corresponds to the oscillators that are not.

Oscillators for which their natural frequency satisfies |ωi| ≤ Kr have solutions approaching a
stable fixed point. This fixed point satisfies φ̇i = 0 and can therefore be implicitly described by

ωi = Kr sin(φi), where |φi| ≤
1
2π. (9)

These are the oscillators that are part of the synchronised pack. With respect to the original
frame, these oscillators are locked to the frequency Ω. For coupling constants great enough (rel-
ative to the natural frequencies), each oscillator will tend to a fixed point. Hence they will all
synchronise when we take the limit K →∞.

However, this is not necessarily the case. Some of the oscillators might have natural frequen-
cies such that |ωi| > Kr. These will not lock to the frequency Ω. Instead, they will run around
the circle in an incoherent manner. As they interact with the other oscillators, they will speed
up at some of the phases and slow down at others.

Recall that we are considering solutions such that the order parameter (4) is constant. To
ensure that the order parameter is constant even though not all oscillators lock their phase,
Kuramoto required the drifting oscillators to form a stationary distribution. He required that
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oscillators pile up at slow places and thin out at fast places. Suppose the distribution of (infinitely
many) oscillators around the circle is given by ρ(φ, ω). Then we should have that it is inversely
proportional to the speed at φ. Hence,

ρ(φ, ω) = C

|φ̇|
= C

|ω −Kr sin(φ)| . (10)

The normalisation constant C is determined to be

C = 1
2π
√
ω2 − (Kr)2

by setting
∫ π
−π ρ(φ, ω)dφ = 1 for each ω.

Since we are in the rotating frame such that ψ = 0, we can rewrite the order parameter to
reiψ = r. The order parameter should describe the collective rhythm of the oscillators. As we
take the limit N →∞, we denote the order parameter by

r = 〈eiφ〉lock + 〈eiφ〉drift, (11)

where 〈eiφ〉lock and 〈eiφ〉drift denote the averages of the oscillators locked to the phase ψ = 0 and
the drifting oscillators respectively. For a locked state φlock, we have that φ̇lock = 0 and hence

sin(φlock) = ω

Kr
. (12)

We assumed that the distribution of the oscillators satisfies g(ω) = g(−ω) in the limit of infinitely
many oscillators. Together with (12) this implies that the number of oscillators at φlock is equal
to the number of oscillators at −φlock and therefore sin(φlock) = 0. Thus the average of the
locked phases is given by

〈eiφ〉lock = 〈cosφ〉lock (13)

The drifting oscillators have natural frequencies satisfying |ω| > Kr. Their contribution to the
average of the population is given by

〈eiφ〉drift =
∫ π

−π

∫
|ω|>Kr

eiφρ(φ, ω)g(ω)dωdφ

=
∫ π

−π

∫ ∞
Kr

(
eiφρ(φ, ω)g(ω) + ei(φ+π)ρ(φ+ π,−ω)g(−ω)

)
dωdφ

=
∫ π

−π

∫ ∞
Kr

(
eiφρ(φ, ω)g(ω)− eiφρ(φ, ω)g(ω)

)
dωdφ

= 0.
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Here we have used the symmetry ρ(φ+ π,−ω) = ρ(φ, ω) implied by (10). Combining this result
with (13) we obtain

r = 〈cosφ〉lock

=
∫
|ω|≤Kr

cos(φ(ω))g(ω)dω.

For the locked oscillators, we can use the expression for ω given by (7) to change variables to φ.

r =
∫
|φ|≤ 1

2π

cos(φ)g(Kr sin(φ))Kr cos(φ)dφ

= Kr

∫
|φ|≤ 1

2π

cos2(φ)g(Kr sin(φ))dφ
(14)

First of all, this equation has the trivial solution with r = 0. The distribution of the oscillators
is given by ρ(φ, ω) = C

|ω| = 1
2π for all φ and ω. The corresponding state is completely incoherent,

it exhibits no kind of synchrony.

The non-trivial solutions of equation (14) satisfies

1 = K

∫
|φ|≤ 1

2π

cos2(φ)g(Kr sin(φ))dφ. (15)

From this condition Kuramoto derived an exact formula for the critical coupling Kc. That is
the value for the coupling K below which no synchronisation occurs and above which (partial)
synchronisation occurs. We obtain this value by letting r → 0+. Then equation (15) becomes

1 = K

∫
|φ|≤ 1

2π

cos2(φ)g(0)dφ

= K

∫
|φ|≤ 1

2π

1
2(cos(2φ) + 1)g(0)dφ

= K

[
(1
3 sin(2φ) + 1

2φ)g(0)
]φ=π

2

φ=−π2

= K
π

2 g(0).

Thus we obtain the critical coupling

Kc = 2
πg(0) . (16)
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If we consider for example a normal distribution

g(ω, σ, µ) = 1
σ2π exp

(
− (x− µ)2

2σ

)
, (17)

we obtain the critical coupling constant

Kc = 4σ exp
(
µ2

2σ

)
. (18)

Later on we will pick the natural frequencies from a normal distribution and compute the critical
coupling using equation (18).

7 Hamiltonian system

We will now consider a Hamiltonian function that is closely related to the Kuramoto model.
We will follow the approach of Witthaut and Timme [2]. In fact, the Hamiltonian function
introduced by Witthaut and Timme will generate the Kuramoto model on an invariant torus.
Therefore we study the properties of the Kuramoto model by studying the dynamics of this
specific Hamiltonian system.

We will consider the Hamiltonian system for N = 3 oscillators. We will see that for this
number of oscillators we can obtain a 2-dimensional Poincaré section. For more than three os-
cillators, this will not be possible any more. To study the Kuramoto model for more oscillators
we will introduce a different method.

The Hamiltonian system we consider describes the dynamics of the Kuramoto model on a
family of invariant tori. The Hamiltonian function is

Ĥ(q1, p1, . . . , qN , pN ) =
N∑
l=1

ω̂

2 (q2
l + p2

l ) + L

4 (q2
l + p2

l )2

+ 1
4

N∑
l,m=1

K̂l,m(qlpm − qmpl)(q2
m + p2

m − p2
l − p2

l ).
(19)

We rewrite (19) in terms of the action-angle variables

Il = (q2
l + p2

l )/2, (20)

φl = arctan(ql/pl) (21)
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for l = 1, . . . , N . The Hamiltanian is then transformed to

H(I1, φ1, . . . , IN , φN ) =
N∑
l=1

ω̂lIl + LI2
l −

N∑
l,m=1

K̂l,m

√
ImIl(Im − Il) sin(φm − φl). (22)

The equations of motion are

İj = − ∂H
∂φj

= −2
∑
m=1

NK̂m,j

√
ImIj(Im − Ij) cos(φm − φj), (23)

φ̇j = ∂H

∂Ij
= ωj + LIj +

N∑
m=1

K̂m,j

[
2
√
IjIm sin(φm − φj)−

√
Im/Ij(Im − Ij) sin(φm − φj)

]
.

(24)

If all actions are equal at some state, e.g. Ij = I for j = 1, . . . , N , then from (23) it follows that
İj = 0 for j = 1, . . . , N . In the case where all actions are equal, (24) can be rewritten to

φ̇j = ω̂j + LI +
N∑
m=1

K̂m,j2I sin(φm − φj), for j = 1, . . . , N. (25)

Recall that the dynamics of the Kuramoto model with mean-field coupling were described by

φ̇j = ωj +
N∑
m=1

K

N
sin(φm − φj), for j = 1, . . . , N. (26)

Thus the Kuramoto dynamics are described on this tori if we take the coupling matrix with
K
N = 2IK̂m,j and shift the frequencies such that ωj = ω̂j + LI. Therefore we can study the
dynamics of the Kuramoto model by considering the Hamiltonian system given by equations
(23) and (24).

We will consider this system for N = 3 which is 6-dimensional. This can be reduced to a 3-
dimensional system by applying two constants of motion and a phase shift. One of the constants
of motion is of course the Hamiltonian function H. The second constant of motion is introduced
by Witthaut and Timme [2] and given by

N = 2
N∑
j=1

Ij . (27)

Furthermore, since the dynamics depend only on the phase differences, the dynamics will be
invariant under a global phase shift.

We will make a change of actions by multiplying the actions by unimodular matrix M and
subsequently make a change of phases by multiplying with its inverse transpose M−T .
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Figure 2: Poincaré surface of sections for N = 3, L = 0, ω1 = −2, ω2 = −1, ω3 = 3 and
Energy= 3
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For N = 3, the Hamiltonian in terms of φi’s and Ii’s is given by

H(I1, φ1, . . . , I3, φ3) = ω1I1 + ω2I2 + ω3I3 + L(I2
1 + I2

2 + I2
3 )

− 2K
N

√
I2I1(I2 − I1) sin(φ2 − φ1)

− 2K
N

√
I3I1(I3 − I1) sin(φ3 − φ1)

− 2K
N

√
I3I2(I3 − I2) sin(φ3 − φ2)
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Figure 3: Poincaré surface of sections for N = 3, L = 0, ω1 = −2, ω2 = −1, ω3 = 3 and
Energy= 2.5
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Figure 4: Poincaré surface of sections for N = 3, L = 0, ω1 = −2, ω2 = −1, ω3 = 3 and
Energy= 1
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Expressing φi’s and Ii’s in terms of new variables pi’s and Ji’s and making use of (27) we obtain

H(J1, p1, J2, p2) = ω1J1 + ω2J2 + ω3(3/2− J1 − J2) + L(J2
1 + J2

2 + (3/2− J1 − J2)2)

− 2K
N

√
J2J1(J2 − J1) sin(p2 − p1)

− 2K
N

√
(3/2− J1 − J2)J1(3/2− 2J1 − J2) sin(−p1)

− 2K
N

√
(3/2− J1 − J2)J2(3/2− J1 − 2J2) sin(−p2).

(28)

Observe that we are now left with only four dimensions. Thus we can now produce Poincaré
surface of sections. We will consider three oscillators with natural frequencies ω1 = −2, ω2 = −1
and ω3 = 3.

Figures (2), (3) and (4) were produced with the C++-program included in the appendix. The
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equations just obtained are implemented and as the surface of section we take φ3 − φ1 = 0. We
then plot I2 versus φ2 − φ1.

Initial conditions were selected from a grid such that the energy is constant. The reason for
this is that we would like to study the dynamical changes when we vary the coupling constant
K. In each of the 3 figures we increase the coupling K

N from left to right.

We observe that for small coupling constants (e.g. K
N = 1/3) the system exhibits regular

behaviour. However, as we increase the coupling K, the Poincaré sections indicate the emerge
of chaos. The initial conditions did not change and neither did the total energy. Nonetheless the
Poincaré sections indicate chaos for higher coupling (e.g. K

N = 5).

From the Poincaré section we were able to draw conclusions about the behaviour of the
Hamiltonian systems for N = 3. However, this method will not be very useful when we increase
the number of oscillators. For the Poincaré section will then be a 3 or more dimensional manifold.
Therefore we introduce another method to investigate the Kuramoto model for more than 3
oscillators.

8 Time-frequency analysis

We will introduce time-frequency analysis based on wavelets. This method works especially well
for analysing rapidly varying dynamics. It works similarly to the windowed Fourier transform
but has some advantages which we will discuss here. In principle the analysis of frequencies is
mathematically defined for infinite time signals. The limitations of this type of analysis done on
finite time signals have been described by Carmona [4].

In our time-frequency analysis we will analyse the order parameter that was derived earlier,
i.e.

reiψ = 1
N

N∑
j=1

eiφj . (29)

8.1 Basic Fourier Transform

The basic Fourier transform decomposes a signal, a complex time signal in our case, into its
frequencies. The Fourier transform expresses a signal as a sum of sinusoids. This results in
a decomposition of frequencies. If a certain frequency is present in a signal, the Fourier rep-
resentation will have a peak at this frequency. There is no information about the location in
time or the duration of this frequency. We only know if a frequency is present in the signal or not.
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Thus there is no time related information. However, in our problem we would like to analyse
exactly that. We are interested in the occurrence of synchronisation in the system, therefore
we need the present frequencies to be linked the time at which they appeared. Furthermore,
we might be able to confirm or contradict the appearance of chaos as observed in the Poincaré
sections in the previous section.

8.2 Windowed Fourier Transform

The windowed Fourier transform uses the same principles but instead of looking at the signal as a
whole, it is split up into different windows. The function is multiplied by some window function
that is localized in time. Each window is then analysed separately. Thus obtaining for each
window information about the present frequencies. The difficulty in this analysis is choosing the
window size. For if the windows are too small, the frequency might not be measured accurately.
Yet if the windows are too wide, we obtain less information about the time related to the
frequencies. This is known as Heisenberg’s uncertainty principle.

8.3 Analysis based on Wavelets

Thus instead of decomposing the signal by using sinusoids, we will use wavelets. The main differ-
ence with sinusoids is that wavelets are localised on a finite time interval only. When analysing
for a certain frequency this wavelet is stretched or shrunk and thus automatically adjusts its
window. The adaptation of wavelets in the method ensures that the length of the window is
adjusted according to the frequency. This way rapid variations are better captured. Whereas
events that happen on short timescales, e.g. timescales less than the length of the window, would
be missed by the original time-frequency method.

The wavelet we will consider in our analysis is the Morlet-Grossmann wavelet with a Gaussian
window g(t) = e−t

2/2σ. We use the function

ψa,b(t) = a−1/2ψ

(
t− b
a

)
, (30)

where the Morlet-Grossmann mother wavelet ψ is given by

ψ(t) = 1
σ
√

2π
e2πiλte−t

2/2σ2
. (31)

The daughter wavelets are then generated by transforming and scaling the mother wavelet. We
take λ = 1 and σ = 2. Furthermore, a > 0 is the scaling factor and b ∈ R determines the shift,
the wavelet is centred at b. The scaling factor determines how much we stretch or compress the
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Figure 5: An example to demonstrate the time-frequency analysis. We analyse the signal sin(t)
for 0 < t < 60.
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(a) Graph of a time signal
with increasing frequency.

(b) Time-frequency plot of a time signal with increasing fre-
quency.

mother wavelet. The actual wavelet for a signal f(t) transform is given by

Lψf(a, b) = 〈f, ψa,b〉 = a−1/2
∫ ∞
−∞

f(t)ψ̄
(
t− b
a

)
dt. (32)

To demonstrate the method we can take for example the signal f(t) = ei2πυt. We then obtain
the expression for the transform

Lψf(a, b) = a−1/2
∫ ∞
−∞

ei2πυtψ̄

(
t− b
a

)
dt (33)

= a1/2
∫ ∞
−∞

ei2πυasei2πυbψ̄(s)ds (34)

= a1/2ei2πυb
¯̂
ψ(aυ), (35)

where we denoted the Fourier transform of ψ by ψ̂. We will be interested in the modulus of this
transform which is given by

|Lψf(a, b)|2 = a1/2e−2π2σ2(υa−λ)2
. (36)

8.4 Time-frequency analysis: some examples

To demonstrate the use of the time-frequency analysis that will be used to analyse the Kuramoto
model we first introduce a few examples. Firstly consider the time signal given simply by sin(t)
its graph and time-frequency plot are shown in Figure 5. The highest amplitude frequencies are
colour coded in red. The lowest amplitude frequencies are coloured dark blue. In this case we
observe a red constant line indicating that the signal has a constant frequency. Now consider the
time signal give by sin(t + 0.1t2). Its graph is given in Figure 6a. The frequency of the signal
increases in time, as can be seen in the time-frequency plot in Figure 6b. The programs used to
produce the time-frequency plots can be found in Appendix B.
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Figure 6: An example to demonstrate the time-frequency analysis. We analyse the signal sin(t+
0.1t2) for 0 < t < 30.
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Figure 7: Here we plotted the limiting value of |r|, that is |r|t=1000 in our case, vs K. We
only consider coupling values for which |r| converges. The numbers of oscillators is n = 10,
natural frequencies ω1, . . . , ω10 taken from a normal distribution with mean µ = 0.3 and standard
deviation σ = 0.05.
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8.5 Time-frequency analysis of the order parameter

We consider the Kuramoto model with natural frequencies picked from a normal distribution
with mean µ = 0.3 and standard deviation σ = 0.05. The initial phases are spread uniformly
over the interval from 0 to 2π. We then estimate the critical coupling by equation (18).

Kc = 4σ exp
(
µ2

2σ

)
(37)

= 4 · 0.05 exp
(

0.32

2 · 0.05

)
(38)

≈ 0.492. (39)

This value for the critical coupling was derived by Kuramoto in the limit of infinitely many os-
cillators. In the time-frequency analysis done here we increase the number of oscillators to 100.
We found that for smaller values of the coupling the system already attains synchronisation. For
100 oscillators we have a critical coupling of K ≈ 0.1. Although we cannot confirm the critical
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coupling Kc ≈ 0.492 for exact synchronisation, we expect that as we increase the number of
oscillators, the critical coupling Kc will be closer to the value estimated above.

The critical coupling Kc is the lowest value for which the system globally synchronises. For
values lower than this Kc the model might show interesting behaviour i.e. separate groups of
oscillators may synchronise. We will see that using time-frequency analysis this behaviour can
be detected.

Figure 8 shows the results of our time-frequency analysis. The colour plots show the presence
of frequencies in the range 0.2/2π < Ω < 0.4/2π. The colourcode is as follows: low amplitude
frequencies are shown in dark blue and the highest amplitude frequencies are coloured red. In
each of the Figures 9a, 9b and 9c, we have shown a plot of the radius r and the original complex
signal of the order parameter for different coupling constants.

What appears to happen is that for small coupling the oscillators do tend to pack together
but after some time they spread out again. Only to repeat this later. Increasing the coupling
seems to prolong the period of time during which the oscillators pack together. Presumably for
values great enough, this pattern is broken and the oscillators stay packed together.

Figure 7 shows a plot of the limiting values of |r| versus the coupling constant K for 10 oscil-
lators. For smaller values of K the system obtains normal synchronisation. That is, their speeds
match up, yet the positions of the oscillators on the circle differ. As we increase the coupling
strength, we notice that the limiting value of |r| converges to 1. Thus as we increase the coupling
constant we approach exact synchronisation in which also the positions of the oscillators match
up.

Up until now we have considered oscillators that all synchronise to each other. This hap-
pened as a consequence of choosing the oscillators from a narrow probability distribution. The
time-frequency analysis confirms what we could also observe by looking at simple graphs of the
order parameter. And what was observed from the animations of the oscillators themselves [9].

We will now consider a large group of oscillators that contain oscillators whose natural fre-
quencies are more spread out. We do this to demonstrate the use of time frequency analysis.
Instead of taking the natural frequencies from one normal distribution, we take them from two
normal distributions. That is, we take the ω1, . . . ω50 from the normal distribution with mean
µ = 0.3 and standard deviation σ = 0.05 and we take ω51, . . . ω100 from the normal distribution
with mean µ = 1 and standard deviation σ = 0.05.

For coupling great enough, all oscillators will still synchronise. However, an interesting phe-
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nomenon might be observed for small coupling. Namely that of partial synchronisation. Since
we have chosen the natural frequencies in a very specific way, we might expect two groups to
form and thus two separate partial synchronisations to occur.

This is hardly observable from the graphs of the order parameter as shown in Figure 11a. Our
expectations are however confirmed by the time-frequency plot of the signal of the order param-
eter shown in Figure 10a. We observe that around the values of means of the natural frequencies
there appear two beams in the time-frequency plot. This confirms the expected behaviour. As we
increase the coupling K from 0.2 to 0.6, we observe that the two highest amplitude frequencies
are now located closer together (Figure 10b). Thus we still have that there are two synchronised
packs, yet the frequencies to which they are synchronised have changed. If we then increase K
to 1.5 we observe that there is only one dominant frequency (Figure 10c). Thus for sufficiently
large coupling the oscillators have all synchronised.

If we chose the natural frequencies ourselves, we can of course have calculated two different
order parameters in order to observe the synchronisation. These order parameters are shown
in Figure 11c for the first 50 oscillators and in Figure 11b for oscillators 51 to 100. Both order
parameters tend to values around 0.8 and vary slightly in time around this value. This is due to
the interaction between the two packs of oscillators. The synchronisation is thus not exact and
not as perfect as the global synchronisation observed earlier.

Consider another collection of oscillators. We now take 30 oscillators, 10 of which have natu-
ral frequencies chosen from the narrow normal distribution considered before with mean µ1 = 0.3
and standard deviation σ1 = 0.05. The remaining 20 oscillators have natural frequencies picked
from a broad normal distribution with mean µ2 = 1.0 and standard deviation σ2 = 0.3. The
time-frequency plots are shown in Figure 12 for varying coupling constant. We observe that the
oscillators from the small pack have synchronised even for small coupling constants. Even though
the other 20 oscillators are moving with widely varied frequencies. These appear as the light blue
scattered pattern at higher frequencies. For sufficiently large coupling constant we again observe
that all oscillators synchronise and that the order parameter has one constant frequency. The
corresponding order parameters for a coupling of K = 0.3 are shown in Figure 13 and confirm
what we can conclude from the time-frequency analysis.

The comparison with the two separate order parameters will only work if we have this type
of knowledge about the oscillators. Thus if we do not have an idea about which of the oscillators
might synchronise with each other, the time-frequency analysis will be of use.
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9 Concluding remarks

We have seen that by varying the coupling constant the behaviour of the oscillators vary. They
may synchronise completely, partially synchronise or not synchronise whatsoever. Thus the same
oscillators may behave differently depending on the coupling strength. This is also the reason
that for example neurons can synchronise in different rhythms and manners. The same oscillat-
ing cells are responsible for a horses walk, its gallop as well as other paces.[1] Only the coupling
strength between the neurons needs to be changed.

The phenomenon of synchronisation was introduced along with a manner to study it. We
followed Kuramoto’s analysis and obtained a value for the critical coupling when considering the
model has infinitely many oscillators. Then we studied a Hamiltonian system that contains the
Kuramoto model on an invariant tori. From the Poincaré sections obtained we concluded that
the Hamiltonian system becomes chaotic as the coupling constant is increased.

To study the behaviour of the model for a greater number of oscillators we took another look
at the order parameter. The order parameter is a useful tool by itself. Whether or not global
synchronisation appears can be determined by analysing the path of the order parameter. Where
synchronisation is characterised by the convergence of the order parameter to a circle around the
origin. In the case of exact synchronisation the order parameter would converge to the unit circle.

In the case where we do not have global synchronisation but rather two or more clusters of
oscillators synchronising separately, this cannot be concluded from simply looking at the order
parameter. Instead we used time-frequency analysis to analyse the order parameter in this case.
We concluded that using this analysis it is possible to detect global synchronisation as well as
the synchronisation of separate clusters of oscillators.
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Figure 8: These time-frequency plots correspond to the plots of the order parameter in Figure 9.
Frequencies 0.2/2π < Ω < 0.4/2π vs time. For N = 5 oscillators, natural frequencies ω1, . . . , ω5
taken from a normal distribution with mean µ = 0.3 and standard deviation σ = 0.05.

(a) Coupling constant K = 0. Each oscillator moves with its own frequency. The red spots indicate high
amplitude frequencies.

(b) Coupling constant K = 0.05. The red spots again indicate high amplitude frequencies, the loca-
tions of these spots seem more regular than without coupling. The coupling is not strong enough for
synchronisation to appear.

(c) Coupling constantK = 0.1. The red line indicates that there is one constant high amplitude frequency
present on the whole time interval. Thus all oscillators have taken on the same frequency, i.e. they have
synchronised.
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Figure 9: These order parameter plots correspond to the time-frequency plots in Figure 8. Left:
plot of |r| vs time. Middle: path of reiψ Right: time-frequency plots for 200 < t < 800 of the
original complex order parameter reiψ. For N = 5 oscillators, natural frequencies ω1, . . . , ω5
taken from a normal distribution with mean µ = 0.3 and standard deviation σ = 0.05.
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(a) K = 0. No synchronisation. Each oscillator
moves with its own natural frequency.
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(b) K = 0.05. Some interaction between the oscil-
lators. Oscillators appear to synchronise but then
spread out again. This repeats itself.
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(c) K = 0.1. Oscillators synchronise. Note that
the order |r| 6= 1. The oscillators do synchronise,
but their phases differ slightly. As we increase the
coupling K, |r| tends to 1.
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Figure 10: As we increase the coupling, the highest amplitude frequencies move closer together.
For sufficiently large coupling there is only one dominant frequency i.e. all oscillators have
synchronised to this frequency. Figures for K = 0.2, K = 0.6 and K = 1.5. n = 100. Natural
frequencies taken from two different normal distributions with µ1 = 0.3, µ2 = 1.0, σ1 = σ2 = 0.05.
Frequency range: 0.2/2π < Ω < 1.2/2π

(a) Coupling constant K = 0.2, corresponding to Figure 11. Two rays of constant frequencies dominate
the signal. These are located at the values chosen for the means of the normal distribution, namely
0.3/2π and 1.0/2π. Oscillators 51 to 100 take more time to synchronise than the others as the top band
starts later. This corresponds to the small radius of the order parameter in Figure 11f.

(b) Coupling constant K = 0.6, the two bands indicating the highest amplitude frequencies have moved
closer together. Thus the two packs that have synchronised separately have now adjusted their frequen-
cies to be closer to each other.

(c) Coupling constant K = 1.5, all oscillators have adapted the same frequency. Thus for sufficiently
large coupling all oscillators synchronised.
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Figure 11: Three different order parameters are plotted for a system of 100 oscillators with cou-
pling K = 0.2. Natural frequencies taken from two different normal distributions with µ1 = 0.3,
µ2 = 1.0, σ1 = σ2 = 0.05. First the distance of the order parameter to the origin (Figures 11a,
11b and 11c). Secondly the paths of the complex order parameter are shown in Figures 11d,
11e and 11f. From the order parameter that includes all 100 oscillators no conclusions about
synchronisation can be drawn (Figures 11a and 11d) except for the absence of global synchro-
nisation. From Figures 11b and 11e we conclude that the first 50 oscillators have synchronised
though the pack is subjected to disturbance of the other oscillators. The same can be concluded
from Figures 11c and 11f for oscillators 51 to 100.
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(f) ω51, . . . , ω100
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Figure 12: Time-frequency plots for a group of n = 30 oscillators. Natural frequencies for
oscillators 1 to 10 taken from a narrow normal distribution with µ1 = 0.3 and σ1 = 0.05 and
natural frequencies for oscillators 11 to 30 taken from a wider normal distribution with µ2 = 1.0
and σ2 = 0.3. Frequency range: 0.01/2π < Ω < 1.7/2π.

(a) Coupling constant K = 0.3, corresponding to Figure 13. The highest amplitude frequency is located
at approximately 0.3 which is the mean chosen for the normal distribution of oscillators 1 to 10. Fur-
thermore we note the presence of higher frequencies by the scattered light blue area which corresponds
to oscillators 11 to 30.

(b) Coupling constant K = 0.5, the high amplitude frequency has increased slightly. As the coupling
increases it is moving towards the lower amplitude frequencies.

(c) Coupling constant K = 1.0. There is one constant frequency present in the signal, this indicates that
all oscillators have synchronised for this high coupling constant.
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Figure 13: Plots for different order parameters as described before. K = 0.3. n = 30. Natural
frequencies taken from two different normal distributions with µ1 = 0.3, µ2 = 1.0, σ1 = 0.05,
σ2 = 0.3. The first 10 oscillators have synchronised yet the other 20 oscillators have not.
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A Poincare surfaces

The following C++ program was used to the Poincare surface of sections of the Hamiltonian
system in Section 7.

1 #i n c l u d e <ios t r eam >
2 #i n c l u d e <iomanip>
3 #i n c l u d e <cmath>
4 #i n c l u d e " nr . h"
5 u s i n g namespace s t d ;
6

7 doub l e w1=−2;
8 doub l e w2=−1;
9 doub l e w3=3;

10 doub l e L=0;
11

12

13 doub l e runt ime =500;
14 doub l e K=1;
15 doub l e p 1 s t a r t = 0 ;
16

17 //K=2.25 Energy=3
18 // doub l e J 1 s t a r t =0.02; doub l e J 2 s t a r t =0.35; doub l e p 2 s t a r t =0;
19 // doub l e J 1 s t a r t =0.06; doub l e J 2 s t a r t =0.3 ; doub l e p 2 s t a r t =0;
20 // doub l e J 1 s t a r t =0.1 ; doub l e J 2 s t a r t =0.25; doub l e p 2 s t a r t =0;
21 // doub l e J 1 s t a r t =0.14; doub l e J 2 s t a r t =0.2 ; doub l e p 2 s t a r t =0;
22 // doub l e J 1 s t a r t =0.18; doub l e J 2 s t a r t =0.15; doub l e p 2 s t a r t =0;
23 // doub l e J 1 s t a r t =0.22; doub l e J 2 s t a r t =0.1 ; doub l e p 2 s t a r t =0;
24 doub l e J 1 s t a r t =0.26; doub l e J 2 s t a r t =0.05; doub l e p 2 s t a r t =0;
25

26

27 // D r i v e r f o r r o u t i n e o d e i n t
28 DP dxsav ; // d e f i n i n g d e c l a r a t i o n s
29 i n t kmax , kount ;
30 Vec_DP ∗xp_p ;
31 Mat_DP ∗yp_p ;
32

33 i n t n rh s ; // count s f u n c t i o n e v a l u a t i o n s
34

35 v o i d d e r i v s ( c o n s t DP t , Vec_I_DP &yvec to r , Vec_O_DP &dydx )
36 { doub l e dH_dJ1 , dH_dJ2 , dH_dp1 , dH_dp2 ;
37

38 n rh s++;
39

40 doub l e J1 = y v e c t o r [ 0 ] ;
41 doub l e J2 = y v e c t o r [ 1 ] ;
42 doub l e p1 = y v e c t o r [ 2 ] ;
43 doub l e p2 = y v e c t o r [ 3 ] ;
44
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45 dH_dJ1 = w1 − w3 + L∗(4∗ J1 + 2∗ J2 − 3) − 2∗K∗ s i n ( p1 − p2 ) ∗ s q r t ( J1∗J2 ) − 4∗K∗ s i n ( p1
) ∗ s q r t (−J1 ∗( J1 + J2 − 1 . 5 ) ) − 2∗K∗ s i n ( p2 ) ∗ s q r t (−J2 ∗( J1 + J2 − 1 . 5 ) ) + (K∗ s i n (
p1 ) ∗(2∗ J1 + J2 − 1 . 5 ) ∗(2∗ J1 + J2 − 1 . 5 ) ) / s q r t (−J1 ∗( J1 + J2 − 1 . 5 ) ) + ( J2∗K∗ s i n
( p2 ) ∗( J1 + 2∗ J2 − 1 . 5 ) ) / s q r t (−J2 ∗( J1 + J2 − 1 . 5 ) ) − ( J2∗K∗ s i n ( p1 − p2 ) ∗( J1 −
J2 ) ) / s q r t ( J1∗J2 ) ;

46

47 dH_dJ2 = w2 − w3 + L∗(2∗ J1 + 4∗ J2 − 3) + 2∗K∗ s i n ( p1 − p2 ) ∗ s q r t ( J1∗J2 ) − 2∗K∗ s i n ( p1
) ∗ s q r t (−J1 ∗( J1 + J2 − 1 . 5 ) ) − 4∗K∗ s i n ( p2 ) ∗ s q r t (−J2 ∗( J1 + J2 − 1 . 5 ) ) + (K∗ s i n (
p2 ) ∗( J1 + 2∗ J2 − 1 . 5 ) ∗( J1 + 2∗ J2 − 1 . 5 ) ) / s q r t (−J2 ∗( J1 + J2 − 1 . 5 ) ) + ( J1∗K∗ s i n
( p1 ) ∗(2∗ J1 + J2 − 1 . 5 ) ) / s q r t (−J1 ∗( J1 + J2 − 1 . 5 ) ) − ( J1∗K∗ s i n ( p1 − p2 ) ∗( J1 −
J2 ) ) / s q r t ( J1∗J2 ) ;

48

49 dH_dp1 = − 2∗K∗ cos ( p1 − p2 ) ∗( J1 − J2 ) ∗ s q r t ( J1∗J2 ) − 2∗K∗ cos ( p1 ) ∗ s q r t (−J1 ∗( J1 + J2
− 1 . 5 ) ) ∗(2∗ J1 + J2 − 1 . 5 ) ;

50

51 dH_dp2 = 2∗K∗ cos ( p1 − p2 ) ∗( J1 − J2 ) ∗ s q r t ( J1∗J2 ) − 2∗K∗ cos ( p2 ) ∗ s q r t (−J2 ∗( J1 + J2 −
1 . 5 ) ) ∗( J1 + 2∗ J2 − 1 . 5 ) ;

52

53 dydx [0]= −dH_dp1 ;
54 dydx [1]= −dH_dp2 ;
55 dydx [2]= dH_dJ1 ;
56 dydx [3]= dH_dJ2 ;
57 }
58

59

60 DP Hami l ton i an ( Vec_I_DP &y v e c t o r )
61 { DP H a m i l t o n i a n i s ;
62 doub l e J1 = y v e c t o r [ 0 ] ;
63 doub l e J2 = y v e c t o r [ 1 ] ;
64 doub l e p1 = y v e c t o r [ 2 ] ;
65 doub l e p2 = y v e c t o r [ 3 ] ;
66

67 H a m i l t o n i a n i s = J1∗w1 + J2∗w2 + L ∗ ( ( J1 + J2 − 1 . 5 ) ∗( J1 + J2 − 1 . 5 ) + J1∗J1 + J2∗J2
) − w3∗( J1 + J2 − 1 . 5 ) − 2∗K∗ s i n ( p1 − p2 ) ∗( J1 − J2 ) ∗ s q r t ( J1∗J2 ) − 2∗K∗ s i n ( p1 ) ∗
s q r t (−J1 ∗( J1 + J2 − 1 . 5 ) ) ∗(2∗ J1 + J2 − 1 . 5 ) − 2∗K∗ s i n ( p2 ) ∗ s q r t (−J2 ∗( J1 + J2 −
1 . 5 ) ) ∗( J1 + 2∗ J2 − 1 . 5 ) ;

68 r e t u r n H a m i l t o n i a n i s ;
69 }
70

71

72 DP mod_2_PI (DP x )
73 { w h i l e ( x<=−M_PI) {
74 x += 2.0∗M_PI ;
75 } w h i l e ( x>M_PI) {
76 x −= 2.0∗M_PI ;
77 } r e t u r n x ;
78 }
79

80
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81 i n t main ( v o i d )
82 { c o n s t i n t N=4, KMAX=100;
83 i n t nbad , nok ;
84 DP eps =1.0e −10,h1=1E−10,hmin =0.0 , x1 =0.0 , x2 =0.0 , dx = 0 . 0 3 ;
85 DP x1max = runt ime ;
86 Vec_DP y s t a r t (N) ;
87 Vec_DP y s t a r t _ o l d (N) ;
88

89 y s t a r t [ 0 ] = J 1 s t a r t ;
90 y s t a r t [ 1 ] = J 2 s t a r t ;
91 y s t a r t [ 2 ] = p 1 s t a r t ;
92 y s t a r t [ 3 ] = p 2 s t a r t ;
93

94 n rh s = 0 ;
95 dxsav=(x2−x1 ) / 2 . 0 ;
96 kmax=KMAX;
97 xp_p=new Vec_DP(KMAX) ;
98 yp_p=new Mat_DP(N,KMAX) ;
99

100

101 o f s t r e am o u t f i l e _ t ( " t r a j e c t o r y . dat " ) ;
102 o f s t r e am o u t f i l e _ E ( " ene rgy . dat " ) ;
103 o f s t r e am o u t f i l e _ s ( "SOS . dat " ) ;
104 o f s t r e am o u t f i l e _ k ( " v a l u e s . dat " ) ;
105

106

107 o u t f i l e _ t << x2 << " " << y s t a r t [ 0 ] << " " << y s t a r t [ 1 ] << " " << y s t a r t [ 2 ] << "
" << y s t a r t [ 3 ] << e n d l ;

108 o u t f i l e _ E << x2 << " " << s e t p r e c i s i o n (20) << Hami l ton i an ( y s t a r t ) << e n d l ;
109

110 f o r ( x1 =0;x1<x1max ; x1+=dx )
111 { cout << " t ime : " << x1 <<" ene rgy : " << Hami l ton i an ( y s t a r t )<< e n d l ;
112

113 y s t a r t [ 2 ] = mod_2_PI ( y s t a r t [ 2 ] ) ;
114 y s t a r t [ 3 ] = mod_2_PI ( y s t a r t [ 3 ] ) ;
115

116 x2 = x1 + dx ;
117

118 DP p1o ld = mod_2_PI ( y s t a r t [ 2 ] ) ;
119

120 y s t a r t _ o l d [ 0 ] = y s t a r t [ 0 ] ;
121 y s t a r t _ o l d [ 1 ] = y s t a r t [ 1 ] ;
122 y s t a r t _ o l d [ 2 ] = mod_2_PI ( y s t a r t [ 2 ] ) ;
123 y s t a r t _ o l d [ 3 ] = mod_2_PI ( y s t a r t [ 3 ] ) ;
124

125 o u t f i l e _ k <<x1 << " " <<y s t a r t [ 0 ] <<" "<< y s t a r t [ 1 ] << " "<<y s t a r t [ 2 ] << " "<<
y s t a r t [ 3 ] <<" " << Hami l ton i an ( y s t a r t )<< e n d l ;

126

127 NR : : o d e i n t ( y s t a r t , x1 , x2 , eps , h1 , hmin , nok , nbad , d e r i v s ,NR : : r k q s ) ;
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128

129 DP p1new=mod_2_PI ( y s t a r t [ 2 ] ) ;
130

131 y s t a r t [ 2 ] = mod_2_PI ( y s t a r t [ 2 ] ) ;
132 y s t a r t [ 3 ] = mod_2_PI ( y s t a r t [ 3 ] ) ;
133

134 i f ( ( p1old <0.4∗M_PI)&&(p1old >0) && ( p1new>−0.4∗M_PI)&&(p1new<0) ) {
135 o u t f i l e _ s << 0 . 5∗ ( y s t a r t _ o l d [1]+ y s t a r t [ 1 ] ) << " " << mod_2_PI ( 0 . 5∗ ( y s t a r t _ o l d

[3]+ y s t a r t [ 3 ] ) − 0 . 5∗ ( y s t a r t _ o l d [2]+ y s t a r t [ 2 ] ) )<< e n d l ;
136 }
137

138 }
139

140

141 o u t f i l e _ t . c l o s e ( ) ;
142 o u t f i l e _ E . c l o s e ( ) ;
143 o u t f i l e _ s . c l o s e ( ) ;
144 o u t f i l e _ k . c l o s e ( ) ;
145

146

147 d e l e t e yp_p ;
148 d e l e t e xp_p ;
149 r e t u r n 0 ;
150 }
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B Time-frequency analysis

To produce the time-frequency plots of Section 8, we used three different programs. Firstly we
compute the path of the order parameter, then apply the time-frequency analysis producing a
data file to convert this with a third program to an image. The three programs are listed in this
order below.

B.1 Computation of the trajectory of the order parameter

1 /∗ Computes the t r a j e c t o r y o f the o r d e r paramete r o f the Kuramoto model .
2 w r i t t e n i n c++ ∗/
3

4 #i n c l u d e <ios t r eam >
5 #i n c l u d e <iomanip>
6 #i n c l u d e <cmath>
7 #i n c l u d e " nr . h"
8

9 #i n c l u d e <random>
10 #i n c l u d e <complex>
11

12

13 u s i n g namespace s t d ;
14

15 c on s t i n t n=10;
16

17 doub l e w_array [ n ] ;
18

19 doub l e runt ime =120;
20 doub l e K=0;
21

22

23 doub l e p h i s t a r t _ a r r a y [ n ] ;
24

25

26

27 // D r i v e r f o r r o u t i n e o d e i n t
28 DP dxsav ; // d e f i n i n g d e c l a r a t i o n s
29 i n t kmax , kount ;
30 Vec_DP ∗xp_p ;
31 Mat_DP ∗yp_p ;
32

33 i n t n rh s ; // count s f u n c t i o n e v a l u a t i o n s
34

35 v o i d d e r i v s ( c o n s t DP t , Vec_I_DP &yvec to r , Vec_O_DP &dydx )
36 {
37 i n t i =0;
38 i n t k=0;
39
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40 n rh s++;
41

42 f o r ( i =0; i <n ; i ++){
43 dydx [ i ] = w_array [ i ] ;
44 f o r ( k=0;k<n ; k++){
45 dydx [ i ]+=K/n∗ s i n ( y v e c t o r [ k]− y v e c t o r [ i ] ) ;
46

47 }
48 }
49

50 }
51

52 DP mod_2_PI (DP x )
53 { w h i l e ( x<=0) {
54 x += 2.0∗M_PI ;
55 } w h i l e ( x>2∗M_PI) {
56 x −= 2.0∗M_PI ;
57 } r e t u r n x ;
58 }
59

60

61 i n t main ( v o i d )
62 { c o n s t i n t N=n , KMAX=100;
63 i n t nbad , nok ;
64 DP eps =1.0e −7; // o r i g i n a l : 1 . 0 e−10
65 DP h1=1E−10,hmin =0.0 , x1 =0.0 , x2 =0.0 , dx = 0 . 0 3 ;
66 DP x1max = runt ime ;
67 Vec_DP y s t a r t (N) ;
68 Vec_DP y s t a r t _ o l d (N) ;
69 i n t i =0;
70

71 o f s t r e am o u t f i l e _ w ( "omega . dat " ) ;
72 o f s t r e am o u t f i l e _ p ( " phase s . dat " ) ;
73

74 s t d : : de fau l t_random_eng ine g e n e r a t o r ;
75 s t d : : n o r m a l _ d i s t r i b u t i o n <double> d i s t r i b u t i o n ( 2 . 5 , 1 . 0 ) ; // normal d i s t r i b u t i o n

( mean , s t a nda rdde v )
76

77 f o r ( i =0; i <n ; i ++){
78

79 w_array [ i ]= d i s t r i b u t i o n ( g e n e r a t o r ) ;
80 o u t f i l e _ w << w_array [ i ]<<" "<<e n d l ;
81

82 }
83 s t d : : de fau l t_random_eng ine g e n e r a t o r 2 ;
84 s t d : : u n i f o r m _ r e a l _ d i s t r i b u t i o n <double> d i s t r i b u t i o n 2 (0 ,2∗M_PI) ; // un i fo rm

d i s t r i b u t i o n [ a , b ]
85

86 f o r ( i =0; i <n ; i ++){
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87 y s t a r t [ i ]= d i s t r i b u t i o n 2 ( g e n e r a t o r 2 ) ;
88 // y s t a r t [ i ]=0;
89

90 o u t f i l e _ p << y s t a r t [ i ]<< " "<<e n d l ;
91 }
92 o u t f i l e _ w . c l o s e ( ) ;
93 o u t f i l e _ p . c l o s e ( ) ;
94

95

96 n rh s = 0 ;
97 dxsav=(x2−x1 ) / 2 . 0 ;
98 kmax=KMAX;
99 xp_p=new Vec_DP(KMAX) ;

100 yp_p=new Mat_DP(N,KMAX) ;
101

102

103

104 o f s t r e am o u t f i l e _ s ( " t r a j e c t o r y . dat " ) ;
105 o f s t r e am o u t f i l e _ o ( " o r d e r . dat " ) ;
106

107

108 f o r ( x1 =0;x1<x1max ; x1+=dx )
109 { cout << " t ime : " << x1 << e n d l ;
110

111

112 NR : : o d e i n t ( y s t a r t , x1 , x2 , eps , h1 , hmin , nok , nbad , d e r i v s ,NR : : r k q s ) ;
113

114 f o r ( i =0; i <n ; i ++){
115 y s t a r t [ i ]=mod_2_PI ( y s t a r t [ i ] ) ;
116 }
117

118 o u t f i l e _ s << x1 ;
119

120 complex<double> im=−1;
121 im = s q r t ( im ) ;
122 f o r ( i =0; i <n ; i ++){
123 o u t f i l e _ s << " "<< y s t a r t [ i ] ;
124 }
125 o u t f i l e _ s << e n d l ;
126

127

128 complex<double> o r d e r=exp ( im∗ y s t a r t [ 0 ] ) ;
129 f o r ( i =1; i <n ; i ++){
130 o r d e r += exp ( im∗ y s t a r t [ i ] ) ;
131 }
132

133 doub l e r e a l o r d e r=r e a l ( o r d e r ) /n ;
134 doub l e imagorde r=imag ( o r d e r ) /n ;
135
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136 o u t f i l e _ o <<x1<<" "<< r e a l o r d e r <<" "<< imagorder <<" "<<e n d l ;
137

138 }
139

140 o u t f i l e _ s . c l o s e ( ) ;
141 o u t f i l e _ o . c l o s e ( ) ;
142 i n t l e n g t h=runt ime /dx +1;
143

144 cout << " l e n g t h o r d e r . dat="<< l e n g t h << e n d l ;
145

146 d e l e t e yp_p ;
147 d e l e t e xp_p ;
148 r e t u r n 0 ;
149 }

B.2 Time-frequency analysis

1 /∗
2 c a l c u l a t e s the w a v e l e t t r a n s f o r m o f a s i n g l e t r a j e c t o r y o f the 3D system .
3 w r i t t e n i n c++
4 ∗/
5

6 #i n c l u d e <math . h>
7 #i n c l u d e <s t d i o . h>
8

9 #d e f i n e e p s i l o n 0 .04
10

11

12 /∗ pa ramete r s f o r the mor l e t w a v e l e t ∗/
13 #d e f i n e s igma 2 .0
14 #d e f i n e lambda 1 .0
15

16 #d e f i n e ntmax 4000
17

18 FILE ∗out ,∗ out1 ,∗ out2 ,∗ out3 ,∗ in ,∗ out_main ,∗ out_f r eq ;
19

20 doub l e mor l e t_re ( doub l e ) ;
21

22 doub l e morlet_im ( doub l e ) ;
23

24 doub l e wave_trans ( double , i n t , doub l e ∗ , doub l e ∗ , doub l e ∗) ;
25

26 doub l e maxis ( double , doub l e ) ;
27

28 doub l e m i n i s ( double , doub l e ) ;
29

30 doub l e t h e t a ( double , double , doub l e ) ;
31

32

33 i n t main ( v o i d )
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34 {
35

36 doub l e eps =1.E−5; // o r i g i n a l : 1 . E−14
37 doub l e h1=1.E−1,hmin=0, t1 , t2 , tmin = 0 . , tmax = 4 4 0 0 0 0 . ; /∗ 2200 ∗/
38 i n t nvar = 6 , nok , nbad ;
39 i n t nt ;
40

41 doub l e omega ;
42

43 /∗ f o r the w a v e l e t t r a n s f o r m ∗/
44

45 doub l e omega_x0 , omega_y0 , omega_z0 ;
46

47 doub l e wave_trans_x , wave_trans_y , wave_trans_z , wave_trans_0 , wave_trans_sub ,
wave_trans_top ;

48

49 doub l e omegamin = 0 . 0 1 , omegamax = 1 . 0 , domega ; //omegamin = 0 . 0 1 , omegamax = 1 . 0 ,
domega ;

50

51 i n t nomega , nomegamax = 200 ;
52

53 i n t nb , nbmin , nbmax ;
54

55

56 doub l e x_ar ray [ ntmax ] ;
57 doub l e px_ar ray [ ntmax ] ;
58 doub l e t _ a r r a y [ ntmax ] ;
59

60 doub l e omega_x0_array [ ntmax ] ;
61

62

63 nbmin = 200 ; // marg ins l e f t & r i g h t
64 nbmax = ntmax − nbmin ;
65

66 domega = ( omegamax−omegamin ) /nomegamax ;
67

68 p r i n t f ( "%f %f %f \n" , omegamin , omegamax , domega ) ;
69

70 doub l e x s t a r t [ nva r ] ;
71

72 p r i n t f ( " e p s i l o n : %f \n" , e p s i l o n ) ;
73

74 /∗ r e a d s t r a j e c t o r y from o r d e r . dat produced by orderpM . cpp ∗/
75 FILE∗ i n _ o r d e r = fopen ( " o r d e r . dat " , " r " ) ;
76

77 f o r ( i n t k=0; k<ntmax ; k++){
78 f s c a n f ( in_orde r , "%l f %l f %l f " , &t _ a r r a y [ k ] , &x_ar ray [ k ] , &px_ar ray [ k ] ) ;
79

80 p r i n t f ( "%l f %l f %l f \n" , t _ a r r a y [ k ] , x_ar ray [ k ] , px_ar ray [ k ] ) ;
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81 }
82

83 /∗ output f o r dat_2_ppm . C ∗/
84 i n t l 20 1=nbmin+1;
85 i n t l 60 1=ntmax−2∗nbmin+1;
86

87 out1 = fopen ( " out . dat " , "w" ) ;
88 f p r i n t f ( out1 , "%d %d \n" , l201 , l 6 01 ) ;
89

90 f o r ( nb=nbmin ; nb<=nbmax ; nb++)
91 {
92 p r i n t f ( " nb=%d\n" , nb ) ;
93

94 f o r ( nomega=0;nomega<=nomegamax ; nomega++)
95 {
96

97 f p r i n t f ( out1 , "%d %d " , nb , nomega ) ;
98

99

100 omega_x0 = omegamin + nomega ∗( omegamax−omegamin ) /nomegamax ;
101

102

103 wave_trans_0 = wave_trans ( omega_x0 , nb , x_array , px_array , t _ a r r a y ) ;
104 f p r i n t f ( out1 , " %f \n" , wave_trans_0 ) ;
105 }
106 }
107

108 f c l o s e ( out1 ) ;
109 }
110

111

112 doub l e mor l e t_re ( doub l e t )
113 {
114 r e t u r n 1 ./ s igma / s q r t ( 2 .∗M_PI) ∗ cos ( (2∗M_PI∗ lambda∗ t ) ) ∗ exp(− t ∗ t / ( 2 .∗ s igma ∗ s igma ) )

;
115 }
116

117 doub l e morlet_im ( doub l e t )
118 {
119 r e t u r n 1 ./ s igma / s q r t ( 2 .∗M_PI) ∗ s i n ( (2∗M_PI∗ lambda∗ t ) ) ∗ exp(− t ∗ t / ( 2 .∗ s igma ∗ s igma ) )

;
120 }
121

122 doub l e maxis ( doub l e x , doub l e y )
123 {
124 i f ( x>=y )
125 r e t u r n x ;
126 e l s e
127 r e t u r n y ;
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128 }
129

130 doub l e m i n i s ( doub l e x , doub l e y )
131 {
132 i f ( x<=y )
133 r e t u r n x ;
134 e l s e
135 r e t u r n y ;
136 }
137

138 doub l e wave_trans ( doub l e omega , i n t nb , doub l e ∗ a r r a y _ s i g n a l , doub l e ∗
a r ray_s igna l_H , doub l e ∗ a r r a y _ t )

139 {
140 doub l e dt , a , b , tmin , tmax , mean = 0 . , t r an s , t r a n s _ r e = 0 . , t rans_im = 0 . ;
141 doub l e ∗ a r r a y _ s i ;
142 i n t nt ;
143

144 a = ( lambda + s q r t ( lambda∗ lambda + 1 . / ( 2 . ∗M_PI∗M_PI∗ s igma ∗ s igma ) ) ) / ( 2 .∗ omega
) ;

145

146 b = a r r a y _ t [ nb ] ;
147

148 tmin = b − 3 .∗ s q r t (2 ) ∗ s igma ∗a ;
149 tmax = b + 3 .∗ s q r t (2 ) ∗ s igma ∗a ;
150

151

152 /∗ de t e rm ine w a v e l e t t r a n s f o r m ∗/
153

154 dt = a r r a y _ t [ 2 ] − a r r a y _ t [ 1 ] ;
155

156 f o r ( nt=( i n t ) maxis ( 0 . , tmin / dt −2.) ; nt<= ( i n t ) m i n i s ( ntmax , tmax/ dt + 2 . ) ;
nt++)

157 {
158 t r a n s _ r e += (
159 a r r a y _ s i g n a l [ nt ] ∗ mor l e t_re ( ( a r r a y _ t [ nt ]−b ) /a ) +
160 a r ray_s igna l_H [ nt ] ∗ morlet_im ( ( a r r a y _ t [ nt ]−b ) /a )
161 ) / s q r t ( a ) ∗ dt ;
162

163 t rans_im += (
164 a r ray_s igna l_H [ nt ] ∗ mor l e t_re ( ( a r r a y _ t [ nt ]−b ) /a ) −
165 a r r a y _ s i g n a l [ nt ] ∗ morlet_im ( ( a r r a y _ t [ nt ]−b ) /a )
166

167 ) / s q r t ( a ) ∗ dt ;
168

169 }
170

171 t r a n s = s q r t ( t r a n s _ r e ∗ t r a n s _ r e + trans_im ∗ t rans_im ) ;
172

173 r e t u r n t r a n s ;
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174 }
175

176

177 doub l e t h e t a ( doub l e q , doub l e p , doub l e h )
178 {
179 doub l e phi , t h e t a i s ;
180

181 ph i = acos ( q/pow ( 4 .∗ h , 0 . 2 5 ) ) ;
182

183 t h e t a i s = M_PI / 2 . ;
184

185 i f ( q>=0 && p>=0)
186 r e t u r n 2∗M_PI−t h e t a i s ;
187 e l s e i f ( p>0 && q<=0)
188 r e t u r n 2∗M_PI−(M_PI−t h e t a i s ) ;
189 e l s e i f ( p<0 && q<=0)
190 r e t u r n 2∗M_PI−( t h e t a i s+M_PI) ;
191 e l s e
192 r e t u r n 2∗M_PI−(2.∗M_PI−t h e t a i s ) ;
193

194 }

B.3 Converting data to image

1 // w r i t t e n i n C
2 #i n c l u d e <ios t r eam >
3 #i n c l u d e <iomanip>
4 #i n c l u d e <cmath>
5 #i n c l u d e <fs t ream >
6

7 u s i n g namespace s t d ;
8

9 v o i d hsv2 rgb ( doub l e h , doub l e s , doub l e v , doub l e ∗ r , doub l e ∗g , doub l e ∗b )
10

11 {
12

13 doub l e q , p , f , t ;
14

15 i n t i ;
16

17 i f ( s==0){
18 ∗ r = ∗g = ∗b = v ;
19 }
20

21 e l s e {
22 h = h / 60 ;
23 i = ( i n t ) ( h ) ;
24 f = h − i ;
25 p = v ∗ (1 − s ) ;
26 q = v ∗ (1 − ( s ∗ f ) ) ;
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27 t = v ∗ (1 − ( s ∗ (1 − f ) ) ) ;
28

29 s w i t c h ( i ) {
30

31 ca se 0 : ∗ r = v ; ∗g = t ; ∗b = p ; break ;
32 ca se 1 : ∗ r = q ; ∗g = v ; ∗b = p ; break ;
33 ca se 2 : ∗ r = p ; ∗g = v ; ∗b = t ; b reak ;
34 ca se 3 : ∗ r = p ; ∗g = q ; ∗b = v ; b reak ;
35 ca se 4 : ∗ r = t ; ∗g = p ; ∗b = v ; b reak ;
36 ca se 5 : ∗ r = v ; ∗g = p ; ∗b = q ; break ;
37 }
38

39 }
40

41 }
42

43 i n t main ( v o i d )
44

45 {
46 doub l e max_fxy=−1.E−10, min_fxy =1.E10 ;
47 i n t Nx , Ny ;
48 doub l e x , y , f x y ;
49

50 // f i n d maximum and minimum v a l u e s
51 i f s t r e a m i n f i l e ( " out . dat " ) ;
52 i f ( i n f i l e )
53 {
54 // # g r i d p o i n t s i n x and y d i r e c t i o n
55 i n f i l e >> Nx >> Ny ;
56 f o r ( i n t ny=1 ; ny<=Ny ; ny++ )
57 f o r ( i n t nx=1 ; nx<=Nx ; nx++ )
58 {
59 i n f i l e >> x >> y >> f x y ;
60 max_fxy = f x y > max_fxy ? f x y : max_fxy ;
61

62 min_fxy = f x y < min_fxy ? f x y : min_fxy ;
63 }
64 }
65 e l s e
66 {
67 cout << " f i l e cou ld not be opened " ;
68 r e t u r n (−1) ;
69 }
70 i n f i l e . c l o s e ( ) ;
71 cout << "Nx : " << Nx << " Ny : " << Ny << "\n" ;
72 cout << "Min : " << min_fxy << " Max : " << max_fxy << "\n" ;
73 i f s t r e a m i n f i l e _ 2 ( " out . dat " ) ;
74 o f s t r ea m o u t f i l e ( " out . ppm" ) ;
75 o u t f i l e << "P3\n\n" << Nx << " " << Ny << "\n\n" << " 255\n\n" ;
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76

77 i f ( i n f i l e _ 2 )
78 {
79 // # g r i d p o i n t s i n x and y d i r e c t i o n
80 i n f i l e _ 2 >> Nx >> Ny ;
81 doub l e r , g , b ;
82 f o r ( i n t ny=1 ; ny<=Ny ; ny++ )
83 f o r ( i n t nx=1 ; nx<=Nx ; nx++ )
84 {
85 i n f i l e _ 2 >> x >> y >> f x y ;
86 doub l e r , g , b ;
87 hsv2 rgb ( ( max_fxy−f x y ) /( max_fxy−min_fxy ) ∗250 ,1 .0 ,1 .0 ,& r ,&g ,&b ) ;
88 i f ( x∗x+y∗y>1)
89 {
90 hsv2 rgb ( ( max_fxy−f x y ) /( max_fxy−min_fxy ) ∗250 ,1 .0 ,1 .0 ,& r ,&g ,&b ) ;
91

92 o u t f i l e << ( i n t ) ( pow( f a b s ( ( fxy −min_fxy ) /( max_fxy−min_fxy ) ) , 0 . 1 ) ∗
255∗ r ) << " " ;

93

94 o u t f i l e << ( i n t ) ( pow( f a b s ( ( fxy −min_fxy ) /( max_fxy−min_fxy ) ) , 0 . 1 ) ∗
255∗g ) << " " ;

95

96 o u t f i l e << ( i n t ) ( pow( f a b s ( ( fxy −min_fxy ) /( max_fxy−min_fxy ) ) , 0 . 1 ) ∗
255∗b ) << "\n" ;

97 }
98 e l s e
99 {

100 hsv2 rgb ( ( max_fxy−f x y ) /( max_fxy−min_fxy ) ∗250 ,0 .4 ,1 .0 ,& r ,&g ,&b ) ;
101

102 o u t f i l e << ( i n t ) ( pow( f a b s ( ( fxy −min_fxy ) /( max_fxy−min_fxy ) ) , 0 . 1 ) ∗
255∗ r ) << " " ;

103

104 o u t f i l e << ( i n t ) ( pow( f a b s ( ( fxy −min_fxy ) /( max_fxy−min_fxy ) ) , 0 . 1 ) ∗
255∗g ) << " " ;

105

106 o u t f i l e << ( i n t ) ( pow( f a b s ( ( fxy −min_fxy ) /( max_fxy−min_fxy ) ) , 0 . 1 ) ∗
255∗b ) << "\n" ;

107 }
108 }
109 }
110 e l s e
111 {
112 cout << " f i l e cou ld not be opened " ;
113 r e t u r n (−1) ;
114 }
115 i n f i l e _ 2 . c l o s e ( ) ;
116 o u t f i l e . c l o s e ( ) ;
117 r e t u r n 0 ;
118 }
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